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Abstract. This note presents a few basic notions of the topology at infinity of groups and
manifolds, from a low-dimensional topological viewpoint. In particular, we will talk about
some topological conditions ensuring the tameness of ends of spaces.
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1 Introduction

This paper continues the short introduction to asymptotic topology and geometric
group theory started in [12]. One of the main ideas of geometric group theory is to
look at groups from a geometrical perspective, by means of topological and geometric
methods, e.g. via the fundamental group.

Recall that the main steps to take into account are the following:

• For any (finitely generated) discrete group Γ there exists a topological space X
with Γ as fundamental group, namely with π1(X) ≃ Γ .

• The group Γ acts on the universal covering space X̃ of X , and the quotient

space is X̃/Γ = X .

• The space X (and hence X̃) is not unique. However, several properties of Γ are

reflected in properties of X or of X̃ (and these are called asymptotic properties).

Here we are interested in those geometric and topological invariants of groups
that “capture” the behavior at infinity of universal covers of spaces with a given
fundamental group.

Among simply connected manifolds, universal covers of compact manifolds may
be characterized by the existence of a free, proper and co-compact action of a discrete
group, and the main such examples are, of course, Euclidean spaces R

n. But they,
in addition to all the well-known geometric properties, have also the feature of being
contractible (i.e. with the same homotopy type of a point).

Working on a possible proof for the 3-dimensional Poincaré Conjecture, H. White-
head conjectured that “any open, contractible 3-manifold is homeomorphic to R

3”.
Eventually, he came up with a very instructive counterexample: the nowadays called
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Whitehead 3-manifold Wh – a contractible, open 3-manifold not homeomorphic to R
3

(see [18]). This manifold is constructed as an increasing union of solid tori Ti, with
specific embedding of any Ti into the interior of Ti+1. The manifold Wh has several
interesting topological properties, for instance it is contractible, not homeomorphic
to R

3, whereas Wh × R ∼= R
4, and, finally, recent results by D. Gabai show that it

may be written as the union of two copies of R3 whose intersection is also homeomor-
phic to R

3. Then, since this manifold is not the universal cover of a closed manifold
(there is no group action on it), the initial question of Whitehead became “whether
or not the universal covering space of a closed, aspherical1 manifold is homeomorphic
to R

n”.
In 1983 M. Davis [3] showed that the answer is “no” for any n > 4, by constructing

compact n-manifolds whose universal covers are not homeomorphic to Euclidean
spaces. In both cases, the key method for distinguishing Whitehead’s and Davis’
manifolds from R

n consists just in comparing their topologies at infinity, because we
know that for Euclidean spaces hold the “strongest” topological tameness condition
of ends: the simple connectivity at infinity.

Considering what has been highlighted up to this point, we will illustrate several
notions that make (topologically) “tame” the infinity of manifolds.

2 Simple connectivity at infinity

In order to study the behavior at infinity of a topological space, one often starts
by imposing the space to be connected at infinity, namely one-ended, which roughly
means that, outside large compacts, the space has only one non-compact component.
Then, given a one-ended space, the additional topological notion one may ask for
the end is its simple connectivity, meaning that loops close to infinity (i.e. very far)
bound disks which are also near the infinity.

Definition 1. A connected and simply connected topological space X is simply con-
nected at infinity (sci) if for any compact subset K ⊂ X there exists a bigger compact
subset L ⊂ X , containing K, such that loops outside L can be filled by disks lying in
X −K.

The simple connectivity at infinity is a very powerful property for the end-topology
of the space, and actually, deep works of J. Stallings, M. Freedman and G. Perelman
(together with other simpler results by C. Edwards and L. Siebenmann) show that
the simple connectivity at infinity is both a necessary and sufficient condition for
a contractible manifold to be homeomorphic to Euclidean space. More precisely:

Theorem 1. (See: Stallings [16], Freedmann [4], Perelman [9].) For any n, an open,
contractible manifold Mn is homeomorphic to R

n if and only if Mn is simply con-
nected at infinity (for n = 3, M3 has to be irreducible).

For instance, Whitehead 3-manifold [18] and Davis’ manifolds [3] are typical exam-
ples of open, simply connected manifolds that are not sci (and hence, by Theorem 1,
they are not homeomorphic to any R

n).
An interesting consequence concerning the possible differential structures (up to

diffeomorphism) on Euclidean spaces is the following related result:

1 A manifold is aspherical if its universal covering space is contractible.
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Theorem 2. (See [16, 4].) For any n 6= 4, Rn admits a unique differential structure,
whereas R

4 supports infinitely many (exotic) differential structures.

2.1 The sci for groups

Since we are also interested in discrete groups, let us notice that the simple connec-
tivity at infinity may be defined for finitely presented groups too, by looking at the
sci of their Cayley 2-complexes (see [1, 10]). To be more precise:

Definition 2. A finitely presented group Γ is simply connected at infinity if and only
if for any compact space X with π1X = Γ , the universal cover X̃ is simply connected
at infinity.

Proposition 1. (See [10].) Definition 2 is well-defined in the category of groups.

Now we want to stress that, in the realm of groups, the simple connectivity at
infinity may also be studied in a metric way (see e.g. [1, 6, 5]):

Theorem 3. (See [1, 6].) The simple connectivity at infinity is a quasi-isometry
invariant for finitely presented groups.

On the other hand, once one considers metrics, it is natural to try to measure
in a quantitative way our condition. This was done in [6] (see also [5]) with the
introduction of a new invariant called sci-growth, which (roughly speaking) measures
“how much” large metric spheres are not simply connected.

Theorem 4. (See [6, 5].) The sci-growth is a quasi-isometry invariant for finitely
presented sci groups. Moreover, it is linear for 3-manifold groups and for Gromov-
hyperbolic sci groups.

We end our comments about the sci pointing out that there is also another way
to define the simple connectivity at the end of a space X : it suffices to consider a
nested exhaustion of (connected) compact subspaces, e.g.

⋃
i
Ki = X , and look at the

inverse limit of the (induced) sequence of fundamental groups π1(X −Ki) (see [7]).
Whenever this limit is trivial (i.e. the trivial group) the space is simply connected
at infinity. Of course, one needs to pay attention to the dependence on the various
choices (e.g. exhaustion, base-points, etc.); however, under additional topological
hypothesis (see [7]), one may even well-define a whole fundamental group at infinity
as a projective limit (which has a very fine structure of pro-group).

3 Tame manifolds

Until now we restricted our attention to open manifolds and/or universal covers.
When one rather deals with manifolds with boundary, a good topological condition
which may “replace” the simple connectivity at infinity for this class of manifolds is
the notion of tame manifold, a property that assures a well-behaved compactification.
More precisely:

Definition 3. A manifold M is called tame (or missing boundary) if it is homeomor-
phic to a compact manifold with a closed subset of the boundary removed.
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The typical example of a contractible manifold that is not tame is again White-
head’s 3-manifold [18].

This condition was intensively studied for 3-manifolds because of the longstand-
ing tameness conjecture which states that every complete hyperbolic 3-manifold with
finitely generated fundamental group is topologically tame (this was proved very re-
cently by I. Agol). One of the main results concerning tame manifolds is the following
topological characterization due to W. Tucker [17]:

Theorem 5. (See Tucker [17].) A connected, irreducible 3-manifold M which does
not contain properly embedded 2-sided projective planes is a missing boundary 3-ma-
nifold if and only if for every compact 3-submanifold C in M , each component of
M − C has finitely generated fundamental group.

Definition 4. A topological space X with the property that for every compact con-
nected subspace C ⊂ X , each component of X−C has finitely generated fundamental
group is called Tucker.

In [11], by using V. Poenaru’s techniques [14], we proved the following invariance
for the Tucker property:

Theorem 6. (See [11].) The Tucker property is a proper homotopy invariant.

We end our discussion about the Tucker property for open manifolds by presenting
a more recent problem we are working on. We first need to recall that, in [14],
V. Poenaru proved a result about the simple connectivity at infinity of open, simply
connected 3-manifolds M under the hypothesis that the stabilization of it with a
disk, i.e. M × Dn, verifies a certain topological condition (namely the possibility
of finding a handle-decomposition without handles of index 1). We are interested in
finding a possible generalization of this result to n-manifolds without restrictions on
the fundamental group.

We think the following should be true:

Question 1. Let V be an open n-manifold (not necessarily simply-connected). Sup-
pose that V ×DN admits a handle decomposition with a finite number of handles of
index 1. Does this imply the manifold V to be Tucker?

We will address this problem in a future paper.

3.1 Groups with the Tucker property

As for the sci, the Tucker property may be considered for discrete groups too. For
instance, in [8], the authors defined it for finitely presented groups, and in addition,
they also found a new characterization of the Tucker property in terms of certain sys-
tems of paths in the Cayley 2-complex (that they called tame combings). Successively,
in [2], it was also proved its quasi-isometry invariance (for groups).

Now, speaking of discrete groups, Tucker property and universal covering spaces,
let us end our presentation by illustrating an example in which geometric methods
may help to solve a topological problem.

In the 80’s V. Poenaru tried to answer Whitehead 3-dimensional question men-
tioned above (whether the universal cover of a closed, irreducible, aspherical 3-mani-
fold is homeomorphic to R

3). Eventually, he came up with partial results, starting
with [15], by imposing geometric conditions on the fundamental group.

Liet. matem. rink. Proc. LMS, Ser. A, 55, 2014, 28–33.



✐

✐

“LMD14_g_Otera” — 2014/12/3 — 17:39 — page 32 — #5
✐

✐

✐

✐

✐

✐

32 D.E. Otera

Definition 5. A finitely generated group Γ is almost-convex if there exists a con-
stant k such that every two points in the sphere of radius n at distance at most 2 in
the Cayley graph of Γ can be joined by a path of length at most k that stays in the
radius ball of length n (intuitively, this means that balls in the Cayley graph don’t
have horns).

The main theorem of [15] states that:

Theorem 7. (See Poenaru [15].) The universal cover of a closed, irreducible, as-
pherical 3-manifold with an almost-convex fundamental group is R

3.

In [13], we provided a simpler proof of Theorem 7 as a corollary of the following
statement:

Proposition 2. (See [13].) Almost-convex groups satisfy the Tucker property.

We are now trying to adapt this last result for the various generalizations of the
almost-convexity notion (e.g. the weak almost-convexity).
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REZIUMĖ

Grupių ir erdvių asimptotinė topologija
Daniele Ettore Otera

Šis darbas pristato grupių ir daugdarų asimptotinės topologijos pagrindus mažųjų dimensijų topologi-
jos požiūriu.

Raktiniai žodžiai: diskrečios grupės, kvazi-izometrijos invariantai, paprastasis jungumas begalybėje,
reguliariosios daugdaros, Takerio savybė.
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