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Quaternionic Bézier curves, surfaces and volume
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Abstract. We extended the rational Bézier construction for linear, bi-linear and three-
linear map, by allowing quaternion weights. These objects are Md&bius invariant and have
halved degree with respect to the real parametrization. In general, these parametrizations
are in four dimensional space. We analyse when a special the three-linear parametrized
volume is in usual three dimensional subspace and gives three orthogonal family of Dupine
cyclides.
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Introduction

A linear rational Bézier curve with quaternionic control points and weights is a circle
(see [3]). A bi-linear rational Bézier surface with quaternion control points and weights
is a cyclide (see [2]). In this note we define and analyse a special tri-linear quaternionic
rational map. This could be useful in geometric modelling and discreet differential
geometry (see [1]).

1 Notations and definitions

We denote by R, C, H the set of real numbers, complex numbers and quaternion
numbers respectively.
In general, the quaternion set H can be represented as

H:{q:[r,p]‘reR,pGRg}:R4 (1)

We denote real and imaginary parts of quaternion ¢ = [r, p] by Re(q) = r, Im(q) = p.
The multiplication in the algebra H is defined as

[r1, p1l[r2, p2] = [r1r2 — p1 - pa, rip2 +7r2p1 + p1 X pal, (2)
where p1 - p2, p1 X pa are scalar and vector products in R®. We denote by ¢ = [r, —p]
a conjugate quaternion to ¢ = [r,pl, |¢| = /72 +p-p = /qq is the length of the
quaternion, ¢~ = g/|q|* = [r/|q|?, —p/|q|?] denote the multiplicative inverse of g, i.e.
qq~ ' = g 'qg = 1. Denote the set of pure imaginary quaternions

Im(H) = {[0,p] | pe R*} =R (3)
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2 Quaternion rational linear Bézier curve

We represent a curve in Bézier form with quaternionic control points a; € ImH and
weights w,, € H, £ = 0,1. Formally speaking, we are dealing with a quaternion
function in homogeneous coordinates (arwy,wr) € H2, k = 0,1. The quaternion
rational linear Bézier curve is defined in as customary quotient:

cn(t) = n(t)d(t)™', where
n(t) = aowo(l — t) + arwit, d(t) = wo(l —t) + wit,
h={hy = (ay,w) EH? k=0,...,1}.

~ o~
S U
= T =

Here we consider n(t), d(t) as quaternions, d(t)~! is an inverse quaternion and
n(t)d(t)~! is the multiplication of two quaternions. So, in general, we have cj,(t) €
H = R*.

Remark 1. If we change the weights wq,w; to 1, wlwo_l the parametrized curve ¢ (t)
is the same. Moreover, if we change the parameter t to s = pt/(1 —t + pt) (p € R)
and weights wg, wy to wp,w; /p then the curve is the same too.

A quaternionic rational Bézier curve c(t) of degree one is a circular arc with two
endpoints ag,a;. This case is well understood (see [3]). We note that these curves
are invariant with respect to Mobius transformation.

3 Bi-linear quaternion Bézier surfaces

In this section we consider a special bi-linear quaternionic Bézier surface. We re-
mind how to construct a principal Dupin cyclide patch. For detailed description we
recommended the preprint [4].

Let us consider four points @ = {ag,a1,as,a2} cyclically arranged on a circle
and an unit orthogonal frame of two vectors {vi,v2} at the point ag. We will use
notations:

dij =lai —ajl, i,j=0,1,2,3, i #j, (7)
dij = (a; —aj)/dij, 1,5 =0,1,2,3, i # j,
di gk, tym = i jdjk - - - dim.- (8)

Using the triple data T = {Q, v1,v2} we compute the following weights

01,2
wo = 1, w1 = do,101, wo = do,2v2, w3 = 5—’d3,1,ov1v2- (9)
0,3

Let denote by H(T) = {(a;,w;), i =0,1,2,3} a collection of points and weights. We
define a special bi-linear quaternion surface

Dyry(s,t) = n(s,t)d(s,t)"", where (10)

n(s,t) = apwo(l — s)(1 —t) + arwi1s(1 — t) + agwa (1 — $)t + agwsst,
d(s,t) =wo(l —s)(1 —t) + wis(l —t) + wa(l — s)t + wsst.
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One can prove that such that the surface patch Dy r)(s,t) is in R? (see [4]).
Moreover, this patch is on some Dupine cyclide. We notice that the weights com-
puted by formulas (9) are not unique. If we change weights (wp, w1, ws,ws) with
weights (woq, Awiq, pwaq, A\uwsq),q € Hy A\, € R we get the same patch with differ-
ent parametrization (see [4]).

4 Volume

Firstly, we call an elementary hexahedron H = {ao, a1, as,as, aia, a3, ass, aiss} a
spherical cube if the following quadrangles

Q3 = {ao,a1,a12,as}, Q2 = {ao,a1,a13,a3}, Q1 = {ao, az, a3, as},

Q3 = {a123, a3, a3, a13}, Q5 = {a123, a3, a2, a12}, Q1 = {a123,a13,a1,a12}

are circular. According to classical Miquel theorem (see [1]) the point a3 is uniquely
determined by the seven points {ag, a1, as, as, a12,a13, ass}. In fact, we have a1a3 =
c1NezNes, where ¢; is a circle through three points {a;, a5, aix }, ¢ = 1,2, 3. Moreover,
the hexahedron H is inscribed in a unique sphere.

Let us choose orthogonal unit frame {vg1, v2,vo3} at the point ag. We consider
three triples

T3 = {Q3,v01,v02}, Ty = {Q2,v01,v03}, T = {Q1,v02,vo3}-

For all triples T}, i = 1, 2,3 we compute the weights {wp, w1, wa, w3, w12, w13, Was }
by the formulas (9) and associate three Dupin ciclides Druryy, Draery), Du(ry) as we
explained in the previous section.

We define a weight wi23 by the formula

53,152,1513,12

w123 = d123,12,1,0- (11)

013,0012,00123,1
Later we will need the following technical
Lemma 1. For the spherical cube we have the following identities

0123201312 03,1 0230

1= , 12
01,123 00,13 02,3 012,23 (12)
0210 0 1)
] = 0210121301233 0230 (13)
00,12 01,123 , 013,23 03,2
0 1) 0130
| — 0128201323 01,30120 (14)
023,12 03,123 00,13 02,1
Moreover, we have the following equivalent definition for the weight w123
01,302,3013,23
wi23 = ——————d123,13,3,0, (15)
00,13 00,23 93,123
0120230
w123 = Mdmsgs,zo- (16)

50,12 50,23 52,123
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Proof. For the proof of the first identity we can apply inversion with the center in the
point ag to the spherical cube. We denote by a corresponding transformed points. We
note that after inversion the sphere of the cube become a plane, points {a}, a},, ab},
{ah, abs, as}, {ah,als,a}} are on a triangle with vertices {a}, ab, a4} and three circles
¢; in the plane intersect in the point a},5, where ¢} is the circle through three points
alia agj? a;k'
Using the sinus theorem for a circular quadrangular {{a}, a}s, a}s3,a}5}} we have

lal — a’gs] _ sin(Zajaj,alss)
[P sin(Zayyaya)3)
Similarly, we see that
a1y — ajs| _ sin(Zajyahah)  lay —as|  sin(Zajahas)
|ay — alos|  sin(Zahaipalys)’  laf —ay|  sin(Zabaial)

Since we have the following identities for angles

N S Y N S N roror ror
Zajasaz = Layya5053, Layayag = Lay5a1aq3, LayaipQg3 = T — £a10790793.
Multiplication of right sides gives

|01 — @lps] a1y — ans| |ab — as| _

|aly — ajg| lah — dipsla} —ab] —

1. (17)

We can apply a distance formula for inversion: |A'B’| = r?|AB|/(|OA||OB|), where
O is a center and r is a radius of inversion; A’, B’ are points obtained after inversion
of the points A, B. From the equality (17) using the distance formula we get

|111 - a123| |1112 - 1123| |112 - 03| |ao - 013| _
|a12 - a13| |a2 - a123| |a1 - a3| |a0 - a23|

1. (18)

This is the first identity in Lemma 1. Analogous, we have identities similar to the
identity (17) and using the distance formula we get identities (13), (14).

Now we explain how to prove that the weight wi23 defined by the formula (11)
is equal to wia3 defined by the another formula (15). The proof of the formula (16)
is similar. First of all using the property (E) for the normalized difference (see [4,
Section 4]) (i.e. d123,12,1 = —di23,13,1 and so on) we have

d123,12,1,0 = —d123,13,1,0 = d123,13,3,0- (19)

If we compare two real coefficient in the formula (11) and (15) we see that they are
equal because of the identity (13).

For the simplicity of notation in tri-linear map we will use the following indexing
for points and weights

000=0, 001=1, 010=2  100=3, 011 =12,
101 =13, 110=23, 111 =123
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i.e. agpo = ag, Wooo = Wo, Goo1 = a1, Woo1 = w1 and so on. Let we define the tri-linear
map

1 1 -1
fs,t,u) < Z @ik Wijk Sit; uk>< Z wijksit]—uk> ,  where

i,j,k=0 i,5,k=0
so=s8, s1=1—s, tog=t, ti1=1—t, wo=u, u=1—u.
We have the following main theorem

Theorem 1. For the tri-linear map f(s,t,u) we have

i.e. tri-linear map is real on every side of spherical cube. Here

H3:{(a0ijaw0ij)a iaj:Oal}a H2 { alO]awlOJ ':Oal}a
le{(aijo,wijo), i,j:O,l}, H3* { alw,wlw :0 1}
H;:{(ailjawilj)v ivj:()vl}v H1 { az]lvwzjl i ]*0 1}

Proof. The first three equalities (20) follows by the definition of tri-linear map. Let

us show that f(s,t,0) = Dpx(s,t).
We write the weights explicitly

01,2
w; = dovo; ©=1,2,3, wiz = % ~d12,1,0003,
0
013 d 023 d
wi3 = 13,3,0002, wa3 = 23,2,0001.-
013,0 23,0

) )

Now we can find the weights {u1, u12, w123, u13} for the patch defined the triple T =
{{al,alg,a123,a13},vlg,v13}, Where ’Uij = di,j’l}ojdij, ’i,j = 1, 2,3 is reﬂection Of the
vector vg; along a line segment {a;,a;}. By the formulas (9) we have

512,13
up = 1, U2 = d1,12 V12, U123 = B

d123,13,1 V13 V12, u13 = dq,13 V13-

)

Now we change the weights {u1, u12, u123, u13} to weights

01,2013 01,3
~ < " U123W1i, 5—u13w1 = {’lU1,’lU12,’lU123,’I,U13}.
13,0

{u w O1.2 Up2W
1W1, ———U12W1,
812.0 12,0013,0
The last equality can be checked by elementary computations using properties of
normalized difference d; ; (see [4, Section 4]). As we already observed this change of
weights does not change the patch, i.e Dgx = f(s,t,0). For the proof of the rest two

formulas we can use the equivalent formulas (15), (16) for the weight w23.

Using the MAPLE we checked that f(s,¢,u) is in R? for many data. Therefore
we conjecture that f(s,t,u) is in R?® always (see Fig. 1).
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Fig. 1. A spherical and a cyclidic cube.

References

[1] A. Bobenko and B. Suris. Discreet Differential Geometry. Integrable Structure. Grad.
Stud. Math., vol. 98. AMS, 2008.

[2] R. Krasauskas and S. Zube. Bezier-like parametrizations of spheres and cyclides using
geometric algebra. In K. Guerlebeck(Ed.), Proceedings of 9th International Conference
on Clifford Algebras and their Applications in Mathematical Physics, Weimar, Germany,
15-20 July, 2011.

[3] S. Zube. A circle represenatation using complex and quaternion numbers. Lith. J. Math.,
46(2):298-310, 2006.

[4] S. Zube and R. Krasauskas. Representation of Dupine cyclides using. Preprint, 2013.

REZIUME

Kvaternioninés Bézier kreivés, pavirsiai ir turiai

Severinas Zubé

Darbe yra nagrinéjamas kvaternioninis tritiesinis Bézier turis, kuris konstruojamas naudojant sferino
kubo kontrolinius taskus. Darbe gautos formulés atitinkamy kontroliniy tasky svoriams rasti. Ka-
dangi taikymuose dazniausiai yra reikalingi objektai trimatéje erdvéje, todél nagrinéjamas klausimas:
kada tritiesinis atvaizdis yra trimatéje erdvéje?

Raktiniai Zodziai: Bézier parametrizacija, kvaternionai.



	Notations and definitions
	Quaternion rational linear Bézier curve
	Bi-linear quaternion Bézier surfaces
	Volume
	References

