Classification of the nullity for the second order discrete nonlocal problems*

Gailė Paukštaitè ${ }^{1}$, Artūras Štikonas ${ }^{1,2}$
${ }^{1}$ Faculty of Mathematics and Informatics, Vilnius University
Naugarduko 4, LT-03225 Vilnius
${ }^{2}$ Institute of Mathematics and Informatics, Vilnius University
Akademijos 4, LT-08663 Vilnius
E-mail: gaile.paukstaite@mif.vu.lt; arturas.stikonas@mif.vu.lt

Abstract

In this paper we investigate the nullity of second order discrete problem with two nonlocal conditions. The classification of nullity with respect to rows and columns of discrete problem matrix is presented.

Keywords: discrete problem, nonlocal conditions, null space, kernel, nullity.

Introduction

Let us investigate a discrete problem

$$
\begin{gather*}
\mathcal{L} u:=a_{i}^{2} u_{i+2}+a_{i}^{1} u_{i+1}+a_{i}^{0} u_{i}=f_{i}, \quad i \in X_{n-2} \tag{1}\\
\left\langle L_{j}, u\right\rangle:=\sum_{k=0}^{n} L_{j}^{k} u_{k}=0, \quad j=1,2 \tag{2}
\end{gather*}
$$

where \mathcal{L} is a second order nonsingular discrete operator with $a_{i}^{0}, a_{i}^{2} \neq 0, f_{i} \in \mathbb{C}$, $i \in X_{n-2}:=\{0,1,2, \ldots, n-2\}$ and nonlocal conditions (2) are described by discrete linear functionals L_{1}, L_{2}.

This problem is equivalent to the linear system $\mathbf{A u}=\widetilde{\mathbf{f}}$. According to S. Roman [?], problem (1)-(2) has a singular matrix \mathbf{A} if and only if the condition

$$
D(\boldsymbol{L})[\boldsymbol{u}]:=\left|\begin{array}{ll}
\left\langle L_{1}, u^{1}\right\rangle & \left\langle L_{2}, u^{1}\right\rangle \tag{3}\\
\left\langle L_{1}, u^{2}\right\rangle & \left\langle L_{2}, u^{2}\right\rangle
\end{array}\right|=0
$$

is satisfied. Here $\boldsymbol{L}=\left(L_{1}, L_{2}\right), \boldsymbol{u}=\left(u^{1}, u^{2}\right)$ and functions u^{1}, u^{2} form any fundamental system of homogeneous equation (1). It is well known that the nullity of singular matrix is nonzero.

In articles [?, ?], the nullity and null space of problem (1)-(2) were investigated. There are formulated two classifications of the nullity in [?]. One classification is obtained with respect to rows but another - with respect to columns of matrix \mathbf{A} of discrete problem (1)-(2). In this paper we analyze the nullity of problem (1)-(2) with respect to rows and columns together and present its classification.

[^0]
1 Classifications of the nullity

Problem (1)-(2) can also be written in the expanded matrix form

$$
\left(\begin{array}{cccccccc}
a_{0}^{0} & a_{0}^{1} & a_{0}^{2} & 0 & \ldots & 0 & 0 & 0 \\
0 & a_{1}^{0} & a_{1}^{1} & a_{1}^{2} & \ldots & 0 & 0 & 0 \\
& & & & \ddots & & & \\
0 & 0 & 0 & 0 & \ldots & a_{n-2}^{0} & a_{n-2}^{1} & a_{n-2}^{2} \\
L_{1}^{0} & L_{1}^{1} & L_{1}^{2} & L_{1}^{3} & \ldots & L_{1}^{n-2} & L_{1}^{n-1} & L_{1}^{n} \\
L_{2}^{0} & L_{2}^{1} & L_{2}^{2} & L_{2}^{3} & \ldots & L_{2}^{n-2} & L_{2}^{n-1} & L_{2}^{n}
\end{array}\right)\left(\begin{array}{c}
u_{0} \\
u_{1} \\
\vdots \\
u_{n-3} \\
u_{n-2} \\
u_{n-1} \\
u_{n}
\end{array}\right)=\left(\begin{array}{c}
f_{0} \\
f_{1} \\
\vdots \\
f_{n-3} \\
f_{n-2} \\
0 \\
0
\end{array}\right) .
$$

In [?], classifications of the nullity dim ker A are given as follows.
Lemma 1 [Classification with respect to rows [?]].
(1) $\operatorname{dim} \operatorname{ker} \mathbf{A}=0$ if and only if $D(\boldsymbol{L})[\boldsymbol{u}] \neq 0$.
(2) $\operatorname{dim} \operatorname{ker} \mathbf{A}=1$. In this respect, such cases are possible:
(a) the row of matrix \mathbf{A} that corresponds to the functional L_{j} is a linear combination of rows, that correspond to the operator \mathcal{L}, but the row, that corresponds to the functional L_{3-j}, and rows, that describe the operator \mathcal{L}, are linearly independent if and only if

$$
\left\langle L_{j}, u^{1}\right\rangle=\left\langle L_{j}, u^{2}\right\rangle=0, \quad\left|\left\langle L_{3-j}, u^{1}\right\rangle\right|+\left|\left\langle L_{3-j}, u^{2}\right\rangle\right| \neq 0, \quad j=1,2 ;
$$

(b) the row of matrix \mathbf{A}, that corresponds to the functional $L_{1}\left(L_{2}\right)$, is a linear combination of the row, that corresponds to the functional $L_{2}\left(L_{1}\right)$, necessarily, and rows, that correspond to the operator \mathcal{L}, but the row, that corresponds to the functional $L_{2}\left(L_{1}\right)$, and rows, that describe the operator \mathcal{L}, are linearly independent if and only if

$$
\left|\left\langle L_{1}, u^{1}\right\rangle\right|+\left|\left\langle L_{1}, u^{2}\right\rangle\right| \neq 0, \quad\left|\left\langle L_{2}, u^{1}\right\rangle\right|+\left|\left\langle L_{2}, u^{2}\right\rangle\right| \neq 0, \quad D(\boldsymbol{L})[\boldsymbol{u}]=0
$$

(3) dim $\operatorname{ker} \mathbf{A}=2$. Both rows of \mathbf{A}, that correspond to $L_{j}, j=1,2$, are linear combinations of rows that describe the operator \mathcal{L} (which are linearly independent) if and only if

$$
\left\langle L_{1}, u^{1}\right\rangle=\left\langle L_{1}, u^{2}\right\rangle=\left\langle L_{2}, u^{1}\right\rangle=\left\langle L_{2}, u^{2}\right\rangle=0
$$

On the other hand [?], discrete problems

$$
\left\{\begin{array} { l }
{ \mathcal { L } v ^ { 1 } = 0 , \quad i \in X _ { n - 2 } , } \tag{4}\\
{ \langle \delta _ { n - 1 } , v ^ { 1 } \rangle : = v _ { n - 1 } ^ { 1 } = 1 , } \\
{ \langle \delta _ { n } , v ^ { 1 } \rangle : = v _ { n } ^ { 1 } = 0 , }
\end{array} \quad \left\{\begin{array}{l}
\mathcal{L} v^{2}=0, \quad i \in X_{n-2}, \\
\left\langle\delta_{n-1}, v^{2}\right\rangle:=v_{n-1}^{2}=0, \\
\left\langle\delta_{n}, v^{2}\right\rangle:=v_{n}^{2}=1
\end{array}\right.\right.
$$

always have unique solutions. Thus, functions v^{1} and v^{2} form the particular fundamental system of (1), which always exists.

Lemma 2 [Classification with respect to columns [?]].

(1) $\operatorname{dim} \operatorname{ker} \mathbf{A}=0$ if and only if $D(\boldsymbol{L})[\boldsymbol{v}] \neq 0$.
(2) $\operatorname{dim} \operatorname{ker} \mathbf{A}=1$. In this respect, three cases are possible:
(a) the next to last column of \mathbf{A} is a linear combination of the first $n-1$ columns of \mathbf{A}, but the last column and the first $n-1$ columns of \mathbf{A} are linearly independent if and only if

$$
\left\langle L_{1}, v^{1}\right\rangle=\left\langle L_{2}, v^{1}\right\rangle=0, \quad\left|\left\langle L_{1}, v^{2}\right\rangle\right|+\left|\left\langle L_{2}, v^{2}\right\rangle\right| \neq 0
$$

(b) the last column of \mathbf{A} is a linear combination of the first $n-1$ columns of \mathbf{A}, but the next to last column and the first $n-1$ columns of \mathbf{A} are linearly independent if and only if

$$
\left\langle L_{1}, v^{2}\right\rangle=\left\langle L_{2}, v^{2}\right\rangle=0, \quad\left|\left\langle L_{1}, v^{1}\right\rangle\right|+\left|\left\langle L_{2}, v^{1}\right\rangle\right| \neq 0
$$

(c) the last (next to last) column of \mathbf{A} is a linear combination of the next to last (last) column, necessarily, and the first $n-1$ columns of \mathbf{A}, but the next to last (last) column and the first $n-1$ columns \mathbf{A} are linearly independent if and only if

$$
\left|\left\langle L_{1}, v^{2}\right\rangle\right|+\left|\left\langle L_{2}, v^{2}\right\rangle\right| \neq 0, \quad\left|\left\langle L_{1}, v^{1}\right\rangle\right|+\left|\left\langle L_{2}, v^{1}\right\rangle\right| \neq 0, \quad D(\boldsymbol{L})[\boldsymbol{v}]=0
$$

(3) dim $\operatorname{ker} \mathbf{A}=2$. Both the last and next to last columns of \mathbf{A} are linear combinations of the first $n-1$ columns of \mathbf{A} (that are linearly independent) if and only if

$$
\left\langle L_{1}, v^{1}\right\rangle=\left\langle L_{1}, v^{2}\right\rangle=\left\langle L_{2}, v^{1}\right\rangle=\left\langle L_{2}, v^{2}\right\rangle=0
$$

We can easily observe the following relations.
Corollary 1. The relations for $j=1,2$ are always valid

$$
\begin{aligned}
\left\langle L_{j}, u^{1}\right\rangle=\left\langle L_{j}, u^{2}\right\rangle=0 & \Leftrightarrow \quad\left\langle L_{j}, v^{1}\right\rangle=\left\langle L_{j}, v^{2}\right\rangle=0 \\
\left|\left\langle L_{j}, u^{1}\right\rangle\right|+\left|\left\langle L_{j}, u^{2}\right\rangle\right| \neq 0 & \Leftrightarrow \quad\left|\left\langle L_{j}, v^{1}\right\rangle\right|+\left|\left\langle L_{j}, v^{2}\right\rangle\right| \neq 0 .
\end{aligned}
$$

2 General classification

By Corollary 1, such a statement follows from Lemma 1 and Lemma 2.
Corollary 2. dim ker $\mathbf{A}=2 \Leftrightarrow\left\langle L_{1}, v^{1}\right\rangle=\left\langle L_{1}, v^{2}\right\rangle=\left\langle L_{2}, v^{1}\right\rangle=\left\langle L_{2}, v^{2}\right\rangle=0$. In this respect, both rows that correspond to functionals $L_{j}, j=1,2$, are linear combinations of rows that describe the operator \mathcal{L}. Moreover, the last and next to last columns are linear combinations of the first $n-1$ columns of \mathbf{A}.

Let us investigate problem (1)-(2) with $\operatorname{dim} \operatorname{ker} \mathbf{A}=1$. According to Lemma 1, there are three different relationships among rows of \mathbf{A}, i.e., two cases are obtained from item (a) with $j=1,2$, and the third case is given by item (b).

We can notice [?, Remark 1], that relation (b), written to the functional L_{1}, is always a result of the same relation, written to the functional L_{2}, and vice versa. So, we can write relation (b) to the functional L_{2}, and then unite it and relation (a) with $j=2$ to one relation. Thus, the united relation is as follows.

Table 1. Classification of problem (1)-(2) where $\operatorname{dim} \operatorname{ker} \widetilde{\mathbf{A}}=1$.

	The row that corresponds to L_{1} is a linear combination of rows that describe the operator \mathcal{L}, but the rows that describe L_{2} and \mathcal{L} are linearly independent	The row that corresponds to L_{2} is a linear combination of rows that describe the operator \mathcal{L} and functional L_{1}, but the rows that describe \mathcal{L} and L_{1} are linearly independent
The next to last column is is a linear combination of the first $n-1$ columns, but the first $n-1$ columns and the last column are linearly independent	$\begin{aligned} & \left\langle L_{1}, v^{1}\right\rangle=0,\left\langle L_{1}, v^{2}\right\rangle=0, \\ & \left\langle L_{2}, v^{1}\right\rangle=0,\left\langle L_{2}, v^{2}\right\rangle \neq 0 \end{aligned}$	$\begin{aligned} & \left\langle L_{1}, v^{1}\right\rangle=0,\left\langle L_{1}, v^{2}\right\rangle \neq 0, \\ & \left\langle L_{2}, v^{1}\right\rangle=0 \end{aligned}$
The last column is a linear combination of the first n columns that are linearly independent	$\begin{aligned} & \left\langle L_{1}, v^{1}\right\rangle=0,\left\langle L_{1}, v^{2}\right\rangle=0, \\ & \left\langle L_{2}, v^{1}\right\rangle \neq 0 \end{aligned}$	$\left\langle L_{1}, v^{1}\right\rangle \neq 0, D(\boldsymbol{L})[\boldsymbol{v}]=0$

(C1) The row of \mathbf{A}, that corresponds to the functional L_{2}, is a linear combination of rows, that describe the operator \mathcal{L} and functional L_{1}. But the rows, that describe the operator \mathcal{L} and functional L_{1}, are linearly independent.

Moreover, rows of \mathbf{A} satisfy this relation if and only if the necessary and sufficient conditions of relation (a) with $j=2$ or relation (b) are satisfied:

$$
\left\{\begin{array} { l }
{ \langle L _ { 2 } , u ^ { 1 } \rangle = \langle L _ { 2 } , u ^ { 2 } \rangle = 0 , } \\
{ | \langle L _ { 1 } , u ^ { 1 } \rangle | + | \langle L _ { 1 } , u ^ { 2 } \rangle | \neq 0 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
\left|\left\langle L_{1}, u^{1}\right\rangle\right|+\left|\left\langle L_{1}, u^{2}\right\rangle\right| \neq 0 \\
\left|\left\langle L_{2}, u^{1}\right\rangle\right|+\left|\left\langle L_{2}, u^{2}\right\rangle\right| \neq 0 \\
D(\boldsymbol{L})[\boldsymbol{u}]=0
\end{array}\right.\right.
$$

Using Corollary 1, we can simplify these conditions to the conditions

$$
\begin{equation*}
\left|\left\langle L_{1}, v^{1}\right\rangle\right|+\left|\left\langle L_{1}, v^{2}\right\rangle\right| \neq 0, \quad D(\boldsymbol{L})[\boldsymbol{v}]=0 \tag{5}
\end{equation*}
$$

Similarly, we can unite relation (b) and relation (c), written to the last column of \mathbf{A}, to one relation as follows.
(C2) The last column of \mathbf{A} is a linear combination of the first n columns that are linearly independent.

We can similarly obtain the necessary and sufficient conditions of this relation among columns of \mathbf{A}. These conditions are given by

$$
\begin{equation*}
\left|\left\langle L_{1}, v^{1}\right\rangle\right|+\left|\left\langle L_{2}, v^{1}\right\rangle\right| \neq 0, \quad D(\boldsymbol{L})[\boldsymbol{v}]=0 \tag{6}
\end{equation*}
$$

Thus, for problem (1)-(2) with $\operatorname{dim} \operatorname{ker} \mathbf{A}=1$, rows satisfy either relation (a) of Lemma 1 with $j=1$ or relation (C1). Similarly, columns satisfy either relation (a) of Lemma 2 or relation (C2). Choosing all the combinations of these relations, we obtain four different relations among rows and columns together. They are given in Table 1. Choosing the relation of rows above and the relation of columns on the left-hand side of the table, we have all the mentioned combinations among rows and columns. There are given the necessary and sufficient conditions for every combination of relations on the corresponding intersections.

Firstly, there are problems where relation (a) of Lemma 1 with $j=1$ and relation (a) of Lemma 2 are satisfied, i.e., all conditions are valid

$$
\begin{aligned}
\left\langle L_{1}, u^{1}\right\rangle & =\left\langle L_{1}, u^{2}\right\rangle=0, & & \left|\left\langle L_{2}, u^{1}\right\rangle\right|+\left|\left\langle L_{2}, u^{2}\right\rangle\right| \neq 0, \\
\left\langle L_{1}, v^{1}\right\rangle & =\left\langle L_{2}, v^{1}\right\rangle=0, & & \left|\left\langle L_{1}, v^{2}\right\rangle\right|+\left|\left\langle L_{2}, v^{2}\right\rangle\right| \neq 0 .
\end{aligned}
$$

Using Corollary 1, these conditions can be simplified to equivalent conditions

$$
\left\langle L_{1}, v^{1}\right\rangle=\left\langle L_{1}, v^{2}\right\rangle=\left\langle L_{2}, v^{1}\right\rangle=0, \quad\left\langle L_{2}, v^{2}\right\rangle \neq 0
$$

Similarly, we can analyze the case where relation (a) of Lemma 1 with $j=1$ and relation (C2) are valid. Problems, where relation (C1) and relation (a) of Lemma 2 are satisfied, are investigated analogously as well. On the other hand, the case, where relations (C1) and (C2) are valid, is investigated quite differently. Rows and columns of A satisfy these relations together if and only if all conditions (5) and (6) are valid

$$
\begin{array}{ll}
\left|\left\langle L_{1}, v^{1}\right\rangle\right|+\left|\left\langle L_{1}, v^{2}\right\rangle\right| \neq 0, & D(\boldsymbol{L})[\boldsymbol{v}]=0 \\
\left|\left\langle L_{1}, v^{1}\right\rangle\right|+\left|\left\langle L_{2}, v^{1}\right\rangle\right| \neq 0, & D(\boldsymbol{L})[\boldsymbol{v}]=0
\end{array}
$$

We can write these conditions as

$$
\begin{equation*}
\left|\left\langle L_{1}, v^{1}\right\rangle\right|+\left|\left\langle L_{1}, v^{2}\right\rangle\right| \neq 0, \quad\left|\left\langle L_{1}, v^{1}\right\rangle\right|+\left|\left\langle L_{2}, v^{1}\right\rangle\right| \neq 0, \quad D(\boldsymbol{L})[\boldsymbol{v}]=0 \tag{7}
\end{equation*}
$$

Let us analyze the first inequality $\left|\left\langle L_{1}, v^{1}\right\rangle\right|+\left|\left\langle L_{1}, v^{2}\right\rangle\right| \neq 0$. It means that at least one inequality $\left\langle L_{1}, v^{1}\right\rangle \neq 0,\left\langle L_{1}, v^{2}\right\rangle \neq 0$ can be satisfied, i.e., either case can be realized:
(1) $\left\langle L_{1}, v^{1}\right\rangle=0$ and $\left\langle L_{1}, v^{2}\right\rangle \neq 0$,
(2) $\left\langle L_{1}, v^{1}\right\rangle \neq 0$ and $\left\langle L_{1}, v^{2}\right\rangle=0$,
(3) $\left\langle L_{1}, v^{1}\right\rangle \neq 0$ and $\left\langle L_{1}, v^{2}\right\rangle \neq 0$.

Firstly, we investigate case (1). Because $D(\boldsymbol{L})[\boldsymbol{v}]=0$ is valid, we have

$$
0=\left\langle L_{1}, v^{1}\right\rangle\left\langle L_{2}, v^{2}\right\rangle=\left\langle L_{1}, v^{2}\right\rangle\left\langle L_{2}, v^{1}\right\rangle
$$

According to case (1), the inequality $\left\langle L_{1}, v^{2}\right\rangle \neq 0$ is valid. So, we obtain $\left\langle L_{2}, v^{1}\right\rangle=0$ from the last equality. But now we have a contrary from the second inequality of (7). Thus, case (1) is impossible. So, cases (2) and (3) remain possible, i.e., the first inequality of (7) is satisfied if and only if either cases (2) or (3) is valid. We can note that this statement is equivalent to the inequality $\left\langle L_{1}, v^{1}\right\rangle \neq 0$, because other number $\left\langle L_{1}, v^{2}\right\rangle$ can obtain any value, i.e., either $\left\langle L_{1}, v^{2}\right\rangle=0$ or $\left\langle L_{1}, v^{2}\right\rangle \neq 0$. Finally, we can see that conditions (7) are equivalent to the following conditions

$$
\left|\left\langle L_{1}, v^{1}\right\rangle\right| \neq 0, \quad\left|\left\langle L_{1}, v^{1}\right\rangle\right|+\left|\left\langle L_{2}, v^{1}\right\rangle\right| \neq 0, \quad D(\boldsymbol{L})[\boldsymbol{v}]=0
$$

that can be simplified to $\left|\left\langle L_{1}, v^{1}\right\rangle\right| \neq 0, D(\boldsymbol{L})[\boldsymbol{v}]=0$.
Example 1. Let us investigate a differential problem

$$
\begin{align*}
&-u^{\prime \prime}=f(x), \quad x \in(0,1) \\
& u(0)=0, \quad u(1)=\gamma u(\xi), \quad \xi \in(0,1), \tag{8}
\end{align*}
$$

where f is a real function and $\gamma \in \mathbb{R}$. We introduce the mesh $\bar{\omega}^{h}=\left\{x_{i}=i h: i \in\right.$ $\left.X_{n}, n h=1\right\}$. Suppose ξ is coincident with the mesh point, i.e., $\xi=s h$. Let us denote $u_{i}=u\left(x_{i}\right)$ and $f_{i}=h^{2} f\left(x_{i+1}\right), i \in X_{n-2}$. Then problem (1) can be approximated by a discrete problem

$$
\begin{gather*}
\mathcal{L} u:=-u_{i+2}+2 u_{i+1}-u_{i}=f_{i}, \quad i \in X_{n-2} \\
\left\langle L_{1}, u\right\rangle:=u_{0}=0, \quad\left\langle L_{2}, u\right\rangle:=u_{n}-\gamma u_{s}=0 . \tag{9}
\end{gather*}
$$

According to (3), this problem has a singular matrix \mathbf{A} if and only if $\gamma \xi=1$.
Moreover, we note that functions $v^{1}=n(1-x)$ and $v^{2}=n(x-1+h), x \in \bar{\omega}^{h}$, are solutions to (4). Thus, the inequality $\left\langle L_{1}, v^{1}\right\rangle=n \neq 0$ is always satisfied. So, by Table 1, for problem (1) such a corollary follows.
Corollary 3. The row of matrix of problem (1), that corresponds to the functional L_{2}, is a linear combination of rows, that describe the operator \mathcal{L} and functional L_{1}, but the rows that describe the operator \mathcal{L} and functional L_{1} are linearly independent. Moreover, the last column is a linear combination of the first n columns, that are always linearly independent. All these relations are valid if and only if $\gamma \xi=1$.

We know that homogenous problem (1) $\left(f_{i}=0, i \in X_{n-2}\right)$ with singular matrix, i.e., $\gamma \xi=1$, describe the nonzero null space. According to Corollary 3, we can eliminate the equation of (1) that corresponds to the functional L_{2}, because it is a linear combination of other (linearly independent) equations. Moreover, we transfer the members with u_{n} to the right-hand side of equality, because they correspond to the last column of discrete problem matrix, which is a linear combination of other columns. Thus, we obtain a linear system $\widetilde{\mathbf{A}} \widetilde{\mathbf{u}}=\mathbf{g}\left(u_{n}\right)$, where $\widetilde{\mathbf{u}}=\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)^{T}$. Here the matrix $\widetilde{\mathbf{A}}$ is nonsingular because it is the intersection of linearly independent rows and columns of \mathbf{A}. According to linear algebra, the unique solution $\widetilde{\mathbf{u}}=\widetilde{\mathbf{A}}{ }^{-1} \mathbf{g}\left(u_{n}\right)$, $u_{n} \in \mathbb{R}$, always exists and describes the null space of problem (1).

In general, the obtained classification with respect to rows and columns is very useful for the solution to the null space of problem (1)-(2).

References

[1] G. Paukštaitè and A. Štikonas. Investigation of matrix nullity for the second order discrete nonlocal boundary value problem. Liet. matem. rink., Proc. LMS, Ser. A, 54:4954, 2013.
[2] G. Paukštaitė and A. Štikonas. Generalized Green's functions for the second-order discrete problems with nonlocal conditions. Lith. Math. J., 54(2):203-219, 2014. doi: 10.1007/s10986-014-9238-8.
[3] S. Roman. Green's functions for boundary-value problems with nonlocal boundary conditions. Doctoral dissertation, Vilnius University, 2011.

REZIUME

[^1]
[^0]: * The research was partially supported by the Research Council of Lithuania (grant No. MIP-047/ 2014).

[^1]: Antrosios eilės diskrečiu̧ju nelokaliúju uždavinių defekto klasifikacija G. Paukštaitè ir A. Štikonas

 Šiame darbe yra nagrinėjamas antrosios eilès diskrečiojo uždavinio su dviem nelokaliosiomis sąlygomis defektas. Pateikta defekto klasifikacija diskrečiojo uždavinio matricos eilučių bei stulpelių atžvilgiu.
 Raktiniai žodžiai: diskretusis uždavinys, nelokaliosiosios sąlygos, nulių aibė, branduolys, defektas.

