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Introduction

Let us investigate a discrete problem

Lu := a2iui+2 + a1iui+1 + a0iui = fi, i ∈ Xn−2, (1)

〈Lj, u〉 :=

n∑

k=0

Lk
juk = 0, j = 1, 2, (2)

where L is a second order nonsingular discrete operator with a0i , a
2
i 6= 0, fi ∈ C,

i ∈ Xn−2 := {0, 1, 2, . . . , n− 2} and nonlocal conditions (2) are described by discrete
linear functionals L1, L2.

This problem is equivalent to the linear system Au = f̃ . According to S. Ro-
man [?], problem (1)–(2) has a singular matrix A if and only if the condition

D(L)[u] :=

∣∣∣∣
〈L1, u

1〉 〈L2, u
1〉

〈L1, u
2〉 〈L2, u

2〉

∣∣∣∣ = 0 (3)

is satisfied. Here L = (L1, L2), u = (u1, u2) and functions u1, u2 form any fundamen-
tal system of homogeneous equation (1). It is well known that the nullity of singular
matrix is nonzero.

In articles [?, ?], the nullity and null space of problem (1)–(2) were investigated.
There are formulated two classifications of the nullity in [?]. One classification is
obtained with respect to rows but another – with respect to columns of matrix A of
discrete problem (1)–(2). In this paper we analyze the nullity of problem (1)–(2) with
respect to rows and columns together and present its classification.
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1 Classifications of the nullity

Problem (1)–(2) can also be written in the expanded matrix form




a00 a10 a20 0 . . . 0 0 0

0 a01 a11 a21 . . . 0 0 0
. . .

0 0 0 0 . . . a0n−2 a1n−2 a2n−2

L0
1 L1

1 L2
1 L3

1 . . . Ln−2

1 Ln−1

1 Ln
1

L0
2 L1

2 L2
2 L3

2 . . . Ln−2

2
Ln−1

2
Ln
2







u0

u1

...
un−3

un−2

un−1

un




=




f0
f1
...

fn−3

fn−2

0
0




.

In [?], classifications of the nullity dimkerA are given as follows.

Lemma 1 [Classification with respect to rows [?]].

(1) dimkerA = 0 if and only if D(L)[u] 6= 0.

(2) dimkerA = 1. In this respect, such cases are possible:

(a) the row of matrix A that corresponds to the functional Lj is a linear combina-
tion of rows, that correspond to the operator L, but the row, that corresponds
to the functional L3−j, and rows, that describe the operator L, are linearly
independent if and only if

〈
Lj , u

1
〉
=

〈
Lj, u

2
〉
= 0,

∣∣〈L3−j, u
1
〉∣∣+

∣∣〈L3−j , u
2
〉∣∣ 6= 0, j = 1, 2;

(b) the row of matrix A, that corresponds to the functional L1(L2), is a linear
combination of the row, that corresponds to the functional L2(L1), necessarily,
and rows, that correspond to the operator L, but the row, that corresponds to
the functional L2(L1), and rows, that describe the operator L, are linearly
independent if and only if
∣∣〈L1, u

1
〉∣∣+

∣∣〈L1, u
2
〉∣∣ 6= 0,

∣∣〈L2, u
1
〉∣∣+

∣∣〈L2, u
2
〉∣∣ 6= 0, D(L)[u] = 0;

(3) dimkerA = 2. Both rows of A, that correspond to Lj, j = 1, 2, are linear
combinations of rows that describe the operator L (which are linearly independent)
if and only if

〈
L1, u

1
〉
=

〈
L1, u

2
〉
=

〈
L2, u

1
〉
=

〈
L2, u

2
〉
= 0.

On the other hand [?], discrete problems






Lv1 = 0, i ∈ Xn−2,〈
δn−1, v

1
〉
:= v1n−1 = 1,〈

δn, v
1
〉
:= v1n = 0,






Lv2 = 0, i ∈ Xn−2,〈
δn−1, v

2
〉
:= v2n−1 = 0,〈

δn, v
2
〉
:= v2n = 1

(4)

always have unique solutions. Thus, functions v1 and v2 form the particular funda-
mental system of (1), which always exists.

Liet. matem. rink. Proc. LMS, Ser. A, 55, 2014, 40–45.
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Lemma 2 [Classification with respect to columns [?]].

(1) dimkerA = 0 if and only if D(L)[v] 6= 0.
(2) dimkerA = 1. In this respect, three cases are possible:

(a) the next to last column of A is a linear combination of the first n−1 columns of
A, but the last column and the first n−1 columns of A are linearly independent
if and only if

〈
L1, v

1
〉
=

〈
L2, v

1
〉
= 0,

∣∣〈L1, v
2
〉∣∣+

∣∣〈L2, v
2
〉∣∣ 6= 0;

(b) the last column of A is a linear combination of the first n − 1 columns of
A, but the next to last column and the first n − 1 columns of A are linearly
independent if and only if

〈
L1, v

2
〉
=

〈
L2, v

2
〉
= 0,

∣∣〈L1, v
1
〉∣∣+

∣∣〈L2, v
1〉
∣∣ 6= 0;

(c) the last (next to last) column of A is a linear combination of the next to last
(last) column, necessarily, and the first n − 1 columns of A, but the next to
last (last) column and the first n − 1 columns A are linearly independent if
and only if
∣∣〈L1, v

2
〉∣∣+

∣∣〈L2, v
2
〉∣∣ 6= 0,

∣∣〈L1, v
1
〉∣∣+

∣∣〈L2, v
1
〉∣∣ 6= 0, D(L)[v] = 0;

(3) dimkerA = 2. Both the last and next to last columns of A are linear combinations
of the first n− 1 columns of A (that are linearly independent) if and only if

〈
L1, v

1
〉
=

〈
L1, v

2
〉
=

〈
L2, v

1
〉
=

〈
L2, v

2
〉
= 0.

We can easily observe the following relations.

Corollary 1. The relations for j = 1, 2 are always valid
〈
Lj, u

1
〉
=

〈
Lj , u

2
〉
= 0 ⇔

〈
Lj, v

1
〉
=

〈
Lj, v

2
〉
= 0,

∣∣〈Lj , u
1〉
∣∣+

∣∣〈Lj, u
2
〉∣∣ 6= 0 ⇔

∣∣〈Lj, v
1
〉∣∣+

∣∣〈Lj , v
2
〉∣∣ 6= 0.

2 General classification

By Corollary 1, such a statement follows from Lemma 1 and Lemma 2.

Corollary 2. dimkerA = 2 ⇔ 〈L1, v
1〉 = 〈L1, v

2〉 = 〈L2, v
1〉 = 〈L2, v

2〉 = 0. In
this respect, both rows that correspond to functionals Lj, j = 1, 2, are linear combina-
tions of rows that describe the operator L. Moreover, the last and next to last columns
are linear combinations of the first n− 1 columns of A.

Let us investigate problem (1)–(2) with dimkerA = 1. According to Lemma 1,
there are three different relationships among rows of A, i.e., two cases are obtained
from item (a) with j = 1, 2, and the third case is given by item (b).

We can notice [?, Remark 1], that relation (b), written to the functional L1, is
always a result of the same relation, written to the functional L2, and vice versa. So,
we can write relation (b) to the functional L2, and then unite it and relation (a) with
j = 2 to one relation. Thus, the united relation is as follows.
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Table 1. Classification of problem (1)–(2) where dimker Ã = 1.

The row that corresponds
to L1 is a linear combina-
tion of rows that describe
the operator L, but the
rows that describe L2 and
L are linearly independent

The row that corresponds to
L2 is a linear combination of
rows that describe the opera-
tor L and functional L1, but
the rows that describe L and
L1 are linearly independent

The next to last column is is a
linear combination of the first
n− 1 columns, but the first
n− 1 columns and the last
column are linearly independent

〈L1, v
1〉 = 0, 〈L1, v

2〉 = 0, 〈L1, v
1〉 = 0, 〈L1, v

2〉 6= 0,

〈L2, v
1〉 = 0, 〈L2, v

2〉 6= 0 〈L2, v
1〉 = 0

The last column is a linear
combination of the first n

columns that are linearly
independent

〈L1, v
1〉 = 0, 〈L1, v

2〉 = 0, 〈L1, v
1〉 6= 0, D(L)[v] = 0

〈L2, v
1〉 6= 0

(C1) The row of A, that corresponds to the functional L2, is a linear combination
of rows, that describe the operator L and functional L1. But the rows, that
describe the operator L and functional L1, are linearly independent.

Moreover, rows of A satisfy this relation if and only if the necessary and sufficient
conditions of relation (a) with j = 2 or relation (b) are satisfied:

{〈
L2, u

1
〉
=

〈
L2, u

2
〉
= 0,∣∣〈L1, u

1
〉∣∣+

∣∣〈L1, u
2
〉∣∣ 6= 0

or






∣∣〈L1, u
1
〉∣∣+

∣∣〈L1, u
2
〉∣∣ 6= 0,∣∣〈L2, u

1
〉∣∣+

∣∣〈L2, u
2
〉∣∣ 6= 0,

D(L)[u] = 0.

Using Corollary 1, we can simplify these conditions to the conditions
∣∣〈L1, v

1
〉∣∣+

∣∣〈L1, v
2
〉∣∣ 6= 0, D(L)[v] = 0. (5)

Similarly, we can unite relation (b) and relation (c), written to the last column of A,
to one relation as follows.

(C2) The last column of A is a linear combination of the first n columns that are
linearly independent.

We can similarly obtain the necessary and sufficient conditions of this relation among
columns of A. These conditions are given by

∣∣〈L1, v
1
〉∣∣+

∣∣〈L2, v
1
〉∣∣ 6= 0, D(L)[v] = 0. (6)

Thus, for problem (1)–(2) with dimkerA = 1, rows satisfy either relation (a) of
Lemma 1 with j = 1 or relation (C1). Similarly, columns satisfy either relation (a) of
Lemma 2 or relation (C2). Choosing all the combinations of these relations, we obtain
four different relations among rows and columns together. They are given in Table 1.
Choosing the relation of rows above and the relation of columns on the left-hand side
of the table, we have all the mentioned combinations among rows and columns. There
are given the necessary and sufficient conditions for every combination of relations on
the corresponding intersections.

Liet. matem. rink. Proc. LMS, Ser. A, 55, 2014, 40–45.
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Firstly, there are problems where relation (a) of Lemma 1 with j = 1 and rela-
tion (a) of Lemma 2 are satisfied, i.e., all conditions are valid

〈
L1, u

1
〉
=

〈
L1, u

2
〉
= 0,

∣∣〈L2, u
1
〉∣∣+

∣∣〈L2, u
2
〉∣∣ 6= 0,

〈
L1, v

1
〉
=

〈
L2, v

1
〉
= 0,

∣∣〈L1, v
2
〉∣∣+

∣∣〈L2, v
2
〉∣∣ 6= 0.

Using Corollary 1, these conditions can be simplified to equivalent conditions

〈
L1, v

1
〉
=

〈
L1, v

2
〉
=

〈
L2, v

1
〉
= 0,

〈
L2, v

2
〉
6= 0.

Similarly, we can analyze the case where relation (a) of Lemma 1 with j = 1 and
relation (C2) are valid. Problems, where relation (C1) and relation (a) of Lemma 2
are satisfied, are investigated analogously as well. On the other hand, the case, where
relations (C1) and (C2) are valid, is investigated quite differently. Rows and columns
of A satisfy these relations together if and only if all conditions (5) and (6) are valid

∣∣〈L1, v
1
〉∣∣+

∣∣〈L1, v
2
〉∣∣ 6= 0, D(L)[v] = 0,

∣∣〈L1, v
1
〉∣∣+

∣∣〈L2, v
1
〉∣∣ 6= 0, D(L)[v] = 0.

We can write these conditions as

∣∣〈L1, v
1
〉∣∣+

∣∣〈L1, v
2
〉∣∣ 6= 0,

∣∣〈L1, v
1
〉∣∣+

∣∣〈L2, v
1
〉∣∣ 6= 0, D(L)[v] = 0. (7)

Let us analyze the first inequality |〈L1, v
1〉|+ |〈L1, v

2〉| 6= 0. It means that at least one
inequality 〈L1, v

1〉 6= 0, 〈L1, v
2〉 6= 0 can be satisfied, i.e., either case can be realized:

(1) 〈L1, v
1〉 = 0 and 〈L1, v

2〉 6= 0,

(2) 〈L1, v
1〉 6= 0 and 〈L1, v

2〉 = 0,

(3) 〈L1, v
1〉 6= 0 and 〈L1, v

2〉 6= 0.

Firstly, we investigate case (1). Because D(L)[v] = 0 is valid, we have

0 =
〈
L1, v

1
〉〈
L2, v

2
〉
=

〈
L1, v

2
〉〈
L2, v

1
〉
.

According to case (1), the inequality 〈L1, v
2〉 6= 0 is valid. So, we obtain 〈L2, v

1〉 = 0
from the last equality. But now we have a contrary from the second inequality of (7).
Thus, case (1) is impossible. So, cases (2) and (3) remain possible, i.e., the first
inequality of (7) is satisfied if and only if either cases (2) or (3) is valid. We can note
that this statement is equivalent to the inequality 〈L1, v

1〉 6= 0, because other number
〈L1, v

2〉 can obtain any value, i.e., either 〈L1, v
2〉 = 0 or 〈L1, v

2〉 6= 0. Finally, we can
see that conditions (7) are equivalent to the following conditions

∣∣〈L1, v
1
〉
| 6= 0,

∣∣〈L1, v
1
〉∣∣+

∣∣〈L2, v
1
〉∣∣ 6= 0, D(L)[v] = 0,

that can be simplified to |〈L1, v
1〉| 6= 0, D(L)[v] = 0.

Example 1. Let us investigate a differential problem

−u′′ = f(x), x ∈ (0, 1),

u(0) = 0, u(1) = γu(ξ), ξ ∈ (0, 1), (8)
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where f is a real function and γ ∈ R. We introduce the mesh ωh = { xi = ih: i ∈
Xn, nh = 1}. Suppose ξ is coincident with the mesh point, i.e., ξ = sh. Let us denote
ui = u(xi) and fi = h2f(xi+1), i ∈ Xn−2. Then problem (1) can be approximated by
a discrete problem

Lu := −ui+2 + 2ui+1 − ui = fi, i ∈ Xn−2,

〈L1, u〉 := u0 = 0, 〈L2, u〉 := un − γus = 0. (9)

According to (3), this problem has a singular matrix A if and only if γξ = 1.

Moreover, we note that functions v1 = n(1 − x) and v2 = n(x − 1 + h), x ∈ ωh,
are solutions to (4). Thus, the inequality 〈L1, v

1〉 = n 6= 0 is always satisfied. So, by
Table 1, for problem (1) such a corollary follows.

Corollary 3. The row of matrix of problem (1), that corresponds to the functional L2,
is a linear combination of rows, that describe the operator L and functional L1, but
the rows that describe the operator L and functional L1 are linearly independent.
Moreover, the last column is a linear combination of the first n columns, that are
always linearly independent. All these relations are valid if and only if γξ = 1.

We know that homogenous problem (1) (fi = 0, i ∈ Xn−2) with singular matrix,
i.e., γξ = 1, describe the nonzero null space. According to Corollary 3, we can
eliminate the equation of (1) that corresponds to the functional L2, because it is a
linear combination of other (linearly independent) equations. Moreover, we transfer
the members with un to the right-hand side of equality, because they correspond to the
last column of discrete problem matrix, which is a linear combination of other columns.
Thus, we obtain a linear system Ãũ = g(un), where ũ = (u0, u1, . . . , un−1)

T . Here

the matrix Ã is nonsingular because it is the intersection of linearly independent rows
and columns of A. According to linear algebra, the unique solution ũ = Ã−1g(un),
un ∈ R, always exists and describes the null space of problem (1).

In general, the obtained classification with respect to rows and columns is very
useful for the solution to the null space of problem (1)–(2).
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REZIUMĖ

Antrosios eilės diskrečiųjų nelokaliųjų uždavinių defekto klasifikacija
G. Paukštaitė ir A. Štikonas

Šiame darbe yra nagrinėjamas antrosios eilės diskrečiojo uždavinio su dviem nelokaliosiomis sąly-
gomis defektas. Pateikta defekto klasifikacija diskrečiojo uždavinio matricos eilučių bei stulpelių
atžvilgiu.

Raktiniai žodžiai: diskretusis uždavinys, nelokaliosiosios sąlygos, nulių aibė, branduolys, defektas.
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