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Abstract. It is known that traditional techniques used to ensure termination of a decision
procedure in non-classical logics are based on loop-checking, in general. Nowadays, effec-
tive loop-check techniques based on histories are used instead of unrestricted loop-check.
These techniques are widely and successfully applied also for non-classical logics containing
induction-like axioms. These induction-like axioms create new type loops (“good loops”)
along with ordinary “bad loops”. In this paper, some loop-check free saturation-like decision
procedure based on some technique of marks is proposed. This saturation procedure termi-
nates when special type marked sequents are obtained. This procedure is demonstrated for
propositional linear temporal logic (PLTL) with temporal operators “next” and “always”.
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Introduction

Temporal logic is a special type of modal logic (see, e.g., [1, 2]). It provides a for-
mal system for qualitatively describing and reasoning about how the truth values of
assertions change over time.

It is well known that check of termination of a decision procedure plays a crucial
role in constructing derivations. Along with non-classical logics without induction
like tools, there are very important for computer science and artificial intelligence
non-classical logics containing induction like tools, e.g., temporal, dynamic, common
knowledge logics and their various modifications and combinations. Usually, these
induction like tools are realized using loop-type axioms. Determination of these loop-
type axioms involves creating new loops (“good loops” in opposite to “bad loops”)
and the new loop checking along with ordinary non-induction-type loop checking (see,
e.g., [3]).

In the present paper, a propositional linear temporal logic with temporal opera-
tors © (“next”) and � (“always”) is considered. It is known that combination of these
temporal operators requires to use induction-like tools. To determine such tools, some
simple saturation procedure, based on the technique of marks, is proposed. This pro-
cedure allows us to eliminate the search of “bad” and “good” loops at all. Instead of
these loops, the proposed procedure generates some marked sequents of special shape.
The constructed procedure is loop-check-free and backtracking-free.

The paper is organized as follows. In Section 1, initial loop-type procedure for
PLTL is described. In Section 2, a proposed loop-check-free backward proof-search
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procedure is described. Some examples demonstrating the procedure are presented.
Foundation of the procedure is proved in Section 3.

1 Initial loop-type calculus for PLTL

The language of considered PLTL contains a set of propositional symbols P, P1,

P2, . . . , Q,Q1, Q2, . . .; the set of logical connectives ⊃,∧,∨,¬; temporal operators �

(“always”) and © (“next”). The language does not contain the temporal operator ⋄
(“sometimes”), assuming that ⋄A = ¬�¬A. We assume that time is linear, discrete,
and ranges over the set of natural numbers.

Formulas in the considered calculi are constructed in the traditional way from
propositional symbols, using the logical connectives and temporal operators. The
formula ©A means “A is true at the next moment of time”; the formula �A means
“A is true now and in all moments of time in the future”.

We consider sequents, i.e., formal expressions Γ → ∆, where Γ and ∆ are finite
sets of formulas.

A sequent S is a primary (quasi-primary) one, iff S = Σ1,©Γ1 → ©Γ2, Σ2

(S = Σ1,©Γ1,�∆1 → ©Γ2,�∆2, Σ2), where Σi (i ∈ {1, 2}) is empty or consists of
propositional symbols; ©Γi (i ∈ {1, 2}) is empty or consists of formulas of the type
©A, where A is an arbitrary formula; �∆i (i ∈ {1, 2}) is empty or consists of formulas
of the type �A, where A is an arbitrary formula. Formulas and sequents without
temporal operators are called logical.

For the considered PLTL logic we consider the basic loop-type calculus GLPLTL
which is defined by the following postulates:

1. Logical axioms: Γ,A → ∆,A, where A is an arbitrary formula.

2. Logical rules: traditional invertible rules for logical connectives.

3. Temporal rules:

Γ → ∆

Π,©Γ → Θ,©∆
(©),

A,©�A,Γ → ∆

�A,Γ → ∆
(� →),

Γ → ∆,A;Γ → ∆,©�A

Γ → ∆,�A
(→ �).

4. Loop-type axioms defined as follows:

A quasi-primary sequent S′ is a looping sequent, if (1) S′ is not a logical axiom,
(2) S′ is above a sequent S on a branch of a derivation tree, (3) S is such
that it subsumes S′ (S < S′ in notation), i.e., S′ coincides with S or S′ can be
obtained from S by using the structural rule of weakening.
A sequent S′ is called a degenerated sequent (d-sequent, in short), if the one of
the following two conditions is satisfied: (1) either S′ is a looping sequent and
there is no the right premiss of any application of (→ �) between S and S′,
or S′ consists of only propositional variables and is not a logical axiom; (2) S′

is a looping sequent and there is the right premiss of an application of (→ �)
between S and S′ but S is an ancestor of some d-sequent in the derivation.
A looping sequent S′ is called a loop-type (or looping) axiom if it is not a
d-sequent. In this case the sequent S is called a quasi-looping axiom, if there is
only one application of the rule (→ ©) between S and S′.
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A sequent S is derivable in GLPLTL (in notation GLPLTL ⊢ S) if we can con-
struct the derivation V in GLPLTL such that each branch of V ends either with a
logical axiom or with a loop-type axiom. In the latter case we say that a “good loop”
is obtained. The sequent S is not derivable in GLPLTL (in notation GLPLTL 6⊢ S)
if there exists a branch in V ending with a non-derivable logical sequent or containing
a “bad looping” sequent, i.e., d-looping sequent which is not above the right premiss
of the rule (→ �). Looping sequents allow us to stop backward proof-search.

Example 1. Let S = ©�(©P ∧ ¬�A),©P → �A. Applying backward the temporal
rules (→ �), (©), (� →) and logical rules (∧ →), (¬ →) above the left premiss of
application (→ �) to S we get the sequent S′ = ©�(©P ∧ ¬�A),©P, P → �A, i.e.,
S � S′, but there is no right premiss of (→ �) between S and S′. S′ is a d-sequent.
The conditions of looping axioms are not satisfied. Therefore, we have “bad looping”,
and GLPLTL 6⊢ S.

The loop-type calculus GLPLTL corresponds to so called saturated calculi, con-
sidered in [4, 5, 6]. It follows from these works that GLPLTL is sound and complete.
It is obvious that all the rules of GLPLTL, except (©), are invertible.

Lemma 1 [Reduction to primary (quasi-primary) sequents]. By backward ap-

plication of (� →), (→ �), and logical rules (only logical rules), any sequent S

can be reduced to a set of primary (quasi-primary) sequents S1, . . . , Sn such that

if GLPLTL ⊢ S, then GLPLTL ⊢ Si, 1 6 i 6 n.

Proof. The lemma is easily proved using the fact that rules used in the reduction
are invertible and contraction-type rules are admissible in GLPLTL. ⊓⊔

2 Marked calculus

In this section, the marked calculus GmTL for the considered PLTL is constructed.
The calculus GmTL allows us: (1) to construct loop-check free and backtracking
free calculus; (2) to construct the terminating proof-search procedure for considered
PLTL.

The calculus GmTL contains the mark ∗ and marked propositional symbols P ∗

(along with non-marked ones). The marked formulas are defined as follows:

1. (Pα)∗ = P ∗, where α ∈ {∅, ∗};

2. (A⊙B)∗ = A∗ ⊙B∗, where ⊙ ∈ {⊃,∨,∧};

3. (σA)∗ = σA∗, where σ ∈ {¬,©,�}.

The object of consideration in GmTL is marked sequents of the shape Γ
δ
→ ∆

where δ ∈ {+, d} along with non-marked sequents.
A quasi-primary sequent S is m-saturated (m-sat, in short, and denoted by Sm),

if (1) Sm contains only marked propositional symbols and (2) Sm is not logical axiom.

A m-saturated sequent Sm is a positive (+m-sat, in short), if Sm = Γ
+
→ ∆.

A m-saturated sequent Sm is a degenerated (dm-sat, in short), if Sm = Γ
d
→ ∆.

The marked calculus GmTL is obtained from the looping calculus GLPLTL by
the following transformations:
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1. The logical axioms are replaced by the sequents of the shape Γ,Aα δ
→ ∆,Aβ ,

where α, β ∈ {∅, ∗}, δ ∈ {∅,+, d}, A is an arbitrary formula.

2. The non-logical axioms (i.e., the looping axioms) are replaced by +m-sat se-
quents, which are now the new type of non-logical axioms.

3. The temporal rules (� →), (→ �) are replaced by the following marked rules:

A,©�A∗, Γ
δ
→ ∆

�A,Γ
δ
→ ∆

(�∗ →),
Γ

d
→ ∆,A; Γ

+
→ ∆,©�A∗

Γ
δ
→ ∆,�A

(→ �
∗),

where δ ∈ {∅,+, d}; the conclusion of these rules is not m-sat sequent. The formula
©�A∗ is called the main side formula of the rules (�∗ →) and (→ �

∗).
A sequent S is derivable in GmTL (Gm

TL ⊢ S in notation), iff there exists
the proof-search tree V such that each leaf of V there is either a logical axiom or
a non-logical one, i.e., +m-sat sequent. In the opposite case, there exists a leaf
containing either a logical sequent which is not derivable in propositional logic, or a
dm-sat sequent. In this case the sequent S is non-derivable in GmTL (Gm

TL 6⊢ S in
notation).

Example 2. Let S = ©�(©P ∧ ¬�A),©P → �A, and let us consider the following
backward proof-search in GmTL:

S4 = P ∗,�(©P ∗ ∧ ¬�A∗)
d
→

(©)
P,©P ∗,©�(©P ∗ ∧ ¬�A∗)

d
→ A∗ S3

(→ �
∗)

P,©P ∗,©�(©P ∗ ∧ ¬�A∗)
d
→ �A∗

(�∗ →),rr
P,�(©P ∗ ∧ ¬�A∗)

d
→

(©)
©P,©�(©P ∗ ∧ ¬�A∗), P

d
→ A S2

(→ �
∗)

©P,©�(©P ∗ ∧ ¬�A∗), P
d
→ �A

(�∗ →),rr
�(©P ∧ ¬�A), P

d
→

(©)
©�(©P ∧ ¬�A),©P

d
→ A S1

(→ �
∗)

©�(©P ∧ ¬�A),©P → �A

Here rr = (∧ →), (¬ →).
Since the sequent S4 is a dm-sat sequent, we have Gm

TL 6⊢ S.

Lemma 2 [Looping property of +m-sat sequent]. Let Gm
TL ⊢V S. Then each

+m-sat sequent from a derivation tree V in Gm
TL satisfies all conditions of loop-type

axiom.

Proof. The proof follows from construction of V and the shape of temporal rules. ⊓⊔

3 Foundation of the calculus GmTL

Let G̃mTL be the calculus obtained from GmTL by adding the loop-type axioms
and non-marked modal rules (� →), (→ �).
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Lemma 3. If G̃m
TL ⊢V S, then Gm

TL ⊢V ∗

S.

Proof. The proof is carried out using induction on n(V ) different loop-type axioms
in V . The case when n(V ) = 0 is obvious. Let n(V ) > 0. Consider any loop-
type axiom S′ in V . By definition of loop-type axioms, there exits a sequent S′′

and a part of the given derivation V , which we denote by reduction R(S′′ ⇒ S′),
where S′ can be obtained from S′′ by the structural rule of weakening. Replacing
the applications of non-marked rules (� →), (→ �) in reduction R(S′′ ⇒ S′) by
applications of corresponding rules (�∗ →), (→ �

∗), we get reduction of the sequent
S′′ to the +m-sat sequent S′∗. Hence, according to the inductive hypothesis, we have
Gm

TL ⊢V ∗

S. ⊓⊔

Lemma 4. If Gm
TL ⊢V S, then GLPLTL ⊢V ∗

S.

Proof. The proof is carried out using induction on p(V ) different +m-sat sequents
in V . The case when p(V ) = 0 is obvious. Let p(V ) > 0 and consider any +m-sat
sequent S′ in V . By the looping property in V , below S′ there exits a sequent S′′ such
that S′ can be obtained from S′′ using the structural rule of weakening, moreover,
there is the right premiss of (→ �

∗) between S′ and S′′. Therefore, S′ can be regarded
as looping axiom. Replacing the marked rules (�∗ →), (→ �

∗) by non-marked ones
and using the inductive hypothesis, we get GLPLTL ⊢V ∗

S. ⊓⊔

From Lemmas 3, 4, and soundness and completeness of GLPLTL, we get

Theorem 1. The marked calculus G
m

TL is sound and complete.
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REZIUMĖ

Žymių metodas tiesinei laiko logikai
R. Pliuškevičius

Straipsnyje pateiktas korektiškas ir pilnas sekvencinis skaičiavimas tiesinei laiko logikai. Įrodymų
baigtinumo nustatymui pateiktas naujas metodas naudojantis žymes. Šis metodas leidžia efektyviai
taikyti modalines taisykles nagrinėjamai laiko logikai.

Raktiniai žodžiai: tiesinė laiko logika, sekvencinis skaičiavimas, išvedimo baigtinumas, žymės.
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