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Abstract. Inspector problem represents an economic duel of inspector and law violator
and is formulated as a bimatrix game. In general, bimatrix game is NP-complete problem.
The inspector problem is a special case where the equilibrium can be found in polynomial
time. In this paper, a generalized version of the Inspector Problem is described with the
aim to represent broader family of applied problems, including the optimization of security
systems. The explicit solution is provided and the Modified Strategy Elimination algorithm
is introduced.
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1 Introduction, bimatrix games

The bimatrix game is defined by two m×n dimension payoff matrices. U = (uij) and
V = (vij) where i = 1, . . . ,m , j = 1, . . . , n are pure strategies of the first and second
player correspondingly [1]. The mixed strategies are denoted by xi, yj where xi, yj
are probabilities. Formally

Definition 1. A vector x = (x1, x2, . . . , xm) :
∑m

i=1 xi = 1 is pure strategy of the
first player, if xi ∈ {0, 1}, it is mixed if xi > 0, and it is strictly mixed if xi > 0,
i = 1, . . . ,m. Strategies of the second player are defined similarly.

Definition 2. The sums U(x, y) =
∑m

i=1

∑n

j=1 xiuijyj and V (x, y) =
∑m

i=1

∑n

j=1 xivijyj are expected payoffs.

Definition 3. A pair (x, y) is the Nash Equilibrium (NE) if it satisfies following
conditions:

U(x, y) > Umax = max

({ n
∑

j=1

uijyj

∣

∣

∣
i = 1, . . . ,m

})

, (1)

V (x, y) > Vmax = max

({ m
∑

i=1

xivij

∣

∣

∣
j = 1, . . . , n

})

. (2)

In [1] the bimatrix games were reduced to bilinear programming and the algo-
rithm defining NE was proposed. However, at the time there are no algorithms for
NE of the general bimatrix problem. In this paper an MSE algorithm of polynomial
complexity was proposed, and implemented for a special class of bimatrix game, so
called Generalized Inspector Problem which properties are defined by Theorem 2.
In contrast to the general Lemke algorithm [1], the MSE algorithm requires solutions
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of a finite sequence of linear programming problems instead of the bilinear program-
ming problem which is NP-complete. In both the matrices U and V of the Inspector
Problem, all the column elements and all the raw elements are equal (with exception
of the diagonal elements). This enables the explicit solution of complexity O(m).

Theorem 1. A pair of strictly mixed strategies (x, y) is the Nash equilibrium of the

bimatrix game (uij), (vij) if and only if there exist real numbers α ir β, such that
{

∑n

j=1 uijyj = α, i = 1, . . . ,m,
∑m

i=1 xivij = β, j = 1, . . . , n.
(3)

Proof. Is in [2]. ⊓⊔

2 Inspector problem

A simple version of the Inspector problem was considered in [2, 3]. Here we regard
more general setup which allows formulation and solution broader family of problems,
including the optimization of the security services. The general inspector problem is
defined by matrix (aij) – m×n, m > n, where elements aij , i = 1, . . . ,m, j = 1, . . . , n
describe inspection actions and parameters. The set of inspection objects is denoted
by M = {1, 2, . . . ,m}, inspection actions are defined by vector

bj = (a1j , a2j , . . . , amj), j = 1, . . . , n.

and inspection parameters are represented by vector

ci = (ai1, ai2, . . . , ain), i = 1, . . . ,m.

Let’s consider quadratic game m × m. Define the payoffs of the first player by
matrices (uij) with elements

uij =

{

fu(ci), if i = j,

gu(ci), if i 6= j,
(4)

and initial conditions:
fu(ci) 6= gu(ci), i = 1, . . . ,m.

The payoffs of the second player are defined by matrix (vij) with elements

vij =

{

fv(cj), if i = j,

gv(cj), if i 6= j,
(5)

and initial conditions
fv(cj) 6= gv(cj), j = 1, . . . ,m.

Here fu(ci), gu(ci), fv(cj) and gv(cj) are real functions of vectors ci and cj . The
objective is to define mixed strategies x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym),
satisfying equilibrium conditions (1) and (2).

2.1 Optimal strategies

The first player is setting such mixed strategies that the payoff of the second player
would be independent on its strategies:

{

∑m

j=1 uijyj = α, i = 1, . . . ,m,
∑m

j=1 yj = 1.
(6)
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The second player is setting such mixed strategies that the payoff of the first player
would be independent on its strategies:

{
∑m

i=1 xivij = β, j = 1, . . . ,m,
∑m

i=1 xi = 1.
(7)

Then it follows from Theorem 1 that,

α = U(x, y), β = V (x, y). (8)

2.2 Explicit solution

Let’s solve system of Eqs. (4)–(7) with variables xi, yi, α, β, i = 1, . . . ,m. It follows
from expressions (4), (6), (8) that

α = U(x, y) =
m
∑

j=1

uijyj = fu(ci)yi +
m
∑

j=1
j 6=i

gu(ci)yj

= fu(ci)yi − gu(ci)yi + gu(ci)

m
∑

j=1

yj = yi
(

fu(ci)− gu(ci)
)

+ gu(ci).

Therefore,

yi =
U(x, y)− gu(ci)

fu(ci)− gu(ci)
, i = 1, . . . ,m. (9)

By solving (5), (7), (8) we define that

xi =
V (x, y)− gv(ci)

fv(ci)− gv(ci)
, i = 1, . . . ,m. (10)

Then it follows from equalities U(x, y) ir V (x, y). From (6), (9) follows that

m
∑

i=1

yi =
m
∑

i=1

U(x, y)− gu(ci)

fu(ci)− gu(ci)
= U(x, y)

m
∑

i=1

1

fu(ci)− gu(ci)
−

m
∑

i=1

gu(ci)

fu(ci)− gu(ci)
= 1.

Therefore,

U(x, y) =
1 +

∑m

i=1
gu(ci)

fu(ci)−gu(ci)
∑m

i=1
1

fu(ci)−gu(ci)

. (11)

By solving system of equalities (7), (9) one defines that

V (x, y) =
1 +

∑m

i=1
gv(ci)

fv(ci)−gv(ci)
∑m

i=1
1

fv(ci)−gv(ci)

. (12)

2.3 Search for the Nash equilibrium

In this paper a Modification of the Strategy Elimination Algorithm (MSE) is proposed
when elimination of negative solutions xi < 0 and yi < 0 is performed by different
players independently. The proof will be given that this algorithm provides the Nash
equilibrium. The pseudo-code follows:

Liet. matem. rink. Proc. LMS, Ser. A, 55, 2014, 79–84.
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Algorithm 1 MSE (m, fv(c1), . . . , fv(cm), gv(c1), . . . , gv(cm))

1. S1 ← 0, S2 ← 0
2. for i← 1 to m do

3. xi ← 0, hi ← i, fi ←
1

fv(ci)−gv(ci)
, S1 ← S1 + fi, S2 ← S2 + figv(ci)

4. NoSolutions ← true, n← m

5. while NoSolutions do

6. NoSolutions ← false, V ← 1+S2

S1

, j ← 1
7. for i← 1 to n do

8. if V > gv(chi
) and fhi

> 0 or V < gv(chi
) and fhi

< 0 then

9. hj ← hi, j ← j + 1
10. else

11. S1 ← S1 − fhi
, S2 ← S2 − fhi

gv(chi
), NoSolutions ← true

12. n← j − 1
13. for i← 1 to n do

14. xhi
← (V − gv(chi

))fhi

15. return x

Steps 1–3 perform initialization, calculation of partial payoffs S1, S2 and output of
parameter hi defining the inspection objects remaining after elimination. Steps 4–12
are for elimination of negative solutions; during each iteration the non-negativity of
solution xhi

is tested (line 8). Iteration is repeated after the elimination of negative
solutions xhi

and updating of expected payoff V ∗(x∗, y∗). Algorithm stops after
elimination of all negative solutions. Steps 13–15 perform output of solutions x =
(x1, . . . , xm). The mixed strategy of the second player is defined similarily by the
algorithm MSE (m, fu(c1), . . . , fu(cm), gu(c1), . . . , gv(um)).

Theorem 2. The MSE algorithm provides Nash Equilibrium (NE) (x∗, y∗) of General

Inspection Problem if

fv(ci) < gv(ci), i = 1, . . . ,m, (13)

fu(cj) < gu(cj), j = 1, . . . ,m. (14)

Proof. In the worst case, the MSE algorithm read lists
∑m−1

i=0 (m − i) times, so
the algorithm is finite and of polynomial complexity O(m2). MSE do not gener-
ate strictly negative solutions x∗ ir y∗ since

∑

i x
∗
i = 1 ir

∑

j y
∗
i = 1 and negative

solutions are eliminated at each iteration during MSE steps 5–12 until the positive
solution x∗ is returned after the finite number of iterations If only positive solutions
x∗ = (xp1

, xp2
, . . . , xpk

) are produced then from Theorem 1 it follows that x∗ is the
NE regarding the objects p1, p2, . . . , pk. Now we show that x∗ also is NE regarding
all the objects. Suppose that M = {1, 2, . . . ,m} and P = {p1, p2, . . . , pk} ⊆M . Then
from (13) it follows

max
({

gv(ci)
∣

∣ i ∈M \ P
})

< V
(

x∗, y∗
)

.

If fv(ci) < gv(ci), i ∈ P , then

Vmax = max

(

{

V
(

x∗, y∗
)}

∪

{ m
∑

i=1

xivij
∣

∣ j ∈M \ P

})

= V
(

x∗, y∗
)

,

since
m
∑

i=1

xivij =
(

fv(cj)− gv(cj)
)

xj + gv(cj) 6 gv(cj) < V
(

x∗, y∗
)

, j ∈M \ P,
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therefore solution x∗ = (xp1
, xp2

, . . . , xpk
) satisfy equlibrium condition (2). If solution

y∗ = (yr1 , yr2 , . . . , yrl) is positive, then from Theorem 1 follows that it is NE regarding
r1, r2, . . . , rl objects. Using arguments similar to those applied considering solution x∗

we show that y∗ is NE regarding all the inspection objects. Suppose that R =
{r1, r2, . . . , rl}. Then it follows from inequality (14) that

max
({

gu(j)
∣

∣ j ∈M \R
})

< U
(

x∗, y∗
)

.

Consequently, the solution y∗ = (yr1 , yr2 , . . . , yrl) satisfies equilibrium condition (1):

Umax = max
({(

fu(j)− gu(j)
)

yj + gu(j)
∣

∣ j ∈ R
}

∪
{

gu(j) | j ∈M \R
})

= U
(

x∗, y∗
)

.

Therefore the solution of MSE algorithm (x∗, y∗) is NE regarding all the inspection
objects. ⊓⊔

2.4 Example, optimization of security system

Denote by (aij) a matrix describing system parameters

ai1 = pi, ai2 = qi, ai3 = gi, ai4 = b, pi, qi, gi, b > 0, i = 1, . . . ,m.

Here M = {1, 2, . . . ,m} is a set of objects protected by the system and the protective
actionas are represented as

b1 = (p1, p2, . . . , pm), b2 = (q1, q2, . . . , qm), b3 = (g1, g2, . . . , gm), b4 = (b, b, . . . , b).

Parameters of protected object are denoted by

ci = (pi, qi, gi, b), i = 1, . . . ,m.

The payoff of the security system is represented by the matrix (uij):

uij =

{

pigi − (1− pi)qigi, if i = j,

0, if i 6= j.

The offenders payoff is described by the matrix (vij) with elements

vij =

{

−pib+ (1− pi)qigi, if i = j,

qjgj , if i 6= j.

It follows from (9), (10), (11), (12) the explicit, not necessarily positive, solutions:

xi =
1−

∑m

j=1
gv(ci)−gv(cj)
fv(cj)−gv(cj)

(fv(ci)− gv(ci))
∑m

j=1
1

fv(cj)−gv(cj)

=
1 +

∑m

j=1
qigi−qjgj
pj(b+qjgj)

pi(b + qigi)
∑m

j=1
1

pj(b+qjgj)

, i = 1, . . . ,m,

yj =
1−

∑m

i=1
gu(cj)−gu(ci)
fu(ci)−gu(ci)

(fu(cj)− gu(cj))
∑m

i=1
1

fu(ci)−gu(ci)

=
(gj(pj − qj + pjqj))

−1

∑m

i=1
1

gi(pi−qi+piqi)

, j = 1, . . . ,m.

According to Theorem 2, the NE solution (x, y) can be defined by corresponding
iterations of MSE algorithm sequentially eliminating a set of protected objects mi,
where gi(pi − piqi + qi) > 0, i = 1, . . . ,m, and using the explicit solution for the
remaining objects.

Liet. matem. rink. Proc. LMS, Ser. A, 55, 2014, 79–84.
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Fig. 1. Convergence to Nash equilibrium.

3 Experimental investigation

The MSE algorithm was implemented by Maple16. The testing was performed by
random generation of 100 samples of the U , V matrices of both the game models. All
samples succeeded. The results are in Fig. 1 where the X axis shows the iteration
number and the Y axis denotes the number of eliminated solutions during a single
iteration. Different lines show different experiments.

4 Conclusion

The Generalized Inspector Problem (GIP) introduced in this paper extends the family
of problems. The improved MSE algorithm provides solution of GIP with the con-
vergence rate O(m). The experiments show that the software implementation reflects
the mathematical results and indicates the improved convergence rate O(m logm).
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REZIUMĖ

Nešo pusiausvyra inspektoriaus uždavinyje
M. Sabaliauskas, J. Mockus

Šiame straipsnyje inspektoriaus uždavinys formuluojamas kaip ekonominė dvikova tarp įstatymų
sergėtojo ir pažeidėjo. Šis uždavinys apibrėžiamas bimatrica, kuri nusako visas galimas lošimo baigtis.
Inspektoriaus uždavinys laikomas išpręstu, jei apskaičiuojamos lošėjų strategijos, tenkinančios Nešo
pusiausvyros sąlygas. Šiame darbe nagrinėjamas apibendrintas inspektoriaus uždavinys su tikslu jį
pritaikyti platesnei uždavinių klasei, įskaitant saugumo sistemų optimizavimą. Pasiūlytas analitinis
sprendinys bei modifikuotas strategijų eliminavimo algoritmas.

Raktiniai žodžiai: lošimų teorija, polinominis algoritmas, Nešo pusiausvyra.
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