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Abstract. It is often the case that data used for the systems reliability assessment comes
from more than one information source. Whether they are power plants at different geo-
graphical locations, gas transmission pipelines operating in different environment or power
transmission networks deployed within various areas. Therefore, different operating condi-
tions, varying maintenance programs and efficiencies have its share in influencing the vul-
nerability and variability of reliability data. However, in practice it is usually the case that
this heterogeneity is neglected leading to the underestimation of underlying uncertainty of
the data. Bayesian models are capable of dealing with this kind of uncertainty as opposed
to the frequentists statistical methods. Hierarchical Bayesian modelling technique provides
means to quantify not only within-source, but also between-source uncertainties. Even in
the case of small data samples it performs well, unlike for example the classical likelihood
method which may provide degenerate estimates. In this paper authors investigate the pos-
sibility to incorporate this kind of uncertainty into the systems reliability and vulnerability
assessment through the Bayesian framework in several cases: gas transmission networks and
power transmission grids.

Keywords: Bayesian reliability, networks, heterogeneity, hierarchical Bayesian methods.

Introduction

There is an issue with systems reliability data that deserves a wider attention from
the scientific community. Consider a case when data is collected from components or
systems operating in various areas. For example, overhead electricity lines deployed
through entire area of the country, pipelines operating in varying soil and environ-
mental conditions. Or maybe some class of rare components, for which the data is
collected from nuclear power plants operating in different countries or continents.
These are examples of cases when in order to assess reliability and vulnerability, the
usual choice is to pool the failure data.

In reliability engineering applying statistical data analysis it is a quite common
practice to pool statistical information from different sources. At first sight it seems
quite natural to make such decision: if systems are similar and perform the same
function, then samples also should be treated as similar. However, such aggregation
causes a loss of information about specificity of those systems and impact of their
environment. However, similar components can have different ageing behaviour when
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operating in different environmental and maintenance conditions. In addition, there
is another issue, leading to the decision to pool the data – highly reliable systems,
especially if they are age-dependent, do not supply sufficient statistical information
for long-term reliability investigation, so that aggregation would strengthen statistical
inferences. The drawback of such heterogeneous and rare data pooling is that one
may get estimates with smaller uncertainty bounds, than it would be when between-
source (separate samples) variability is considered. Those too optimistic uncertainty
bounds will lead to less strict safety margins what itself causes higher risk of safety
limits exceedance [2]. In this paper we are concerned with modelling reliability data
heterogeneity, since it has a significant influence on the overall system reliability and
its prediction considering data uncertainty. There are two approaches that could be
used for the statistical analysis of heterogeneous data: mixed-effect models [5] and
hierarchical Bayesian models [1]. The second class was chosen and together with
Bayesian methods will be employed through this entire paper without turning to the
frequentist concepts. We investigate the possibility to incorporate heterogeneity into
the systems reliability and vulnerability assessment through the Bayesian framework
in several cases: gas transmission networks and power transmission grids.

1 Hierarchical Bayesian modelling of reliability data

Due to the widespread use of the Bayesian methods we assume prior knowledge of
basic probabilistic language in constructing the Bayesian models: likelihood function,
prior distribution, and posterior distribution. Consider N samples of failure evens
(reliability data) observations, i.e. we observe N systems and register the failures of
some particular group of components. For the sake of simplicity we assume that the
number of data points in each sample is the same and is equal to M . One option
is to pool all samples to obtain only one, as already discussed in the introduction
section, but this would most likely lead to the incorrect variance estimates. Another
option is to build a hierarchy and to introduce a partial pooling. Suppose we have
a reason to believe that each source generates data from similar but not exactly the
same probabilistic model. Denote the model of the i-th source by f(x|θi).This means
that we do not assume that data from different sources are identically distributed.
These models form the first level of the hierarchy. We have now sets of unknown
parameters that needs to be estimated. Estimating these parameters as though they
are independent from each other would lead to large variances especially if the sam-
ples are small. However, we assume that these unknown parameters are related to
each other by enforcing a stochastic model onto them. We treat parameters θi as
unobserved data (or unobservables) and assume a model π(θi|ζ), where ζ is another
unknown parameter that has to be estimated. This model is called the second level
of the hierarchy. It seems like we made our lives more difficult by introducing even
more unknown parameters. However, this second level model enables the sharing of
information between those N samples, so that they are partially related (partially
pooled). Now we put all the hierarchies into a mathematical expressions:

Xi,j |θ ∼ f(x|θi),

θi|ζ ∼ π(θi|ζ),

ζ ∼ π0,
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where Xi,j is the j-th observation for i-th source, π0 is a prior distribution for the
parameter ζ. The so called posterior distribution π(θi|ζ) is proportional to L(X, θ)·π0,
i.e. the product of likelihood and prior distribution. All the inferences are then made
from this posterior distribution. The calculations are another thing most likely
posterior distribution will not have an analytic form and approximating algorithms
must be employed. For this the most common choice is Markov Chain Monte Carlo
algorithms [4].

2 Demonstration of hierarchical reliability modelling

2.1 Power transmission grid

13 overhead lines of 330 kV rating were observed over the period of 42 years. To
be more specific, not all of the lines were observed over exactly 42 years, some were
put in operation several years later comparing to others. Therefore we have 13 data
sources with registered outages. More about the application of hierarchical Bayesian
models in power grid context see the recent work of authors [3].

Variability of data clearly indicates that one cannot assume the same stochastic
model for all overhead lines – frequencies are simply too different. Therefore we
consider building a hierarchical Bayesian model. If Xi denotes the number of outages
over the entire observation period ∆i for the i-th overhead line of length Li and if we
assume a Poisson distribution for the count data, the stochastic model is as follows:

Xi|θ ∼ Poisson
(

exp(λi∆iLi)
)

,

λi|ζ ∼ N
(

µ, σ2
)

,
(

µ, σ2
)

∝ 1,

where exp(λi) denotes the failure rate for i-th line when length and period are assumed
to be equal to 1. Exponential function was chosen due to the simplifications, because
now λi are not restricted to the fixed positive values and normal distribution with
parameters µ, σ2 can be imposed over these parameters. The likelihood function can
be expressed as follows:

L(X |λ) ∝ σ−N exp

[

N
∑

i=1

(

− eλi +Xiλi

)

−
1

2σ2

N
∑

i=1

(λi − µ)2

]

.

Since the prior distribution for the parameters µ, σ2 is chosen to be uniform, the
posterior is proportional to the likelihood function L(X |λ). The estimates of the
outage rates are presented in Fig. 1.

If one would treat the outage rates as coming from the same probabilistic model,
one would get posterior outage estimate equal to 2.07, obviously inappropriate value
for the variation level present in the data sample.

2.2 Reliability of natural gas pipeline network

Now consider a problem of evaluating the reliability natural gas transmission pipeline
network. It is often the case that for this task international databases are used because
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Fig. 1. Posterior outage rates estimates together with 0.95 uncertainty bounds (in grey).

of large data samples contained in there. Most widely known such databases are OPS
PHMSA [2], EGIG [2], UKOPA [9], and NEB [10]. However, OPS data sample has two
break points at the years when the data collection criterion was changed. In addition,
for our case study we include Lithuanian data sample, which is very small and has only
7 data points with one breakpoint. Therefore we have a 5 data samples coming from
different sources albeit representing the similar components. How to deal with those
data breakpoints and changing collection criteria see [8, 6, 7]. The model constructed
to deal with additional breakpoints was called a Criteria-Dependent Poisson model
(or CDP model). The hierarchical model in this particular case is quite complex as it
includes age-dependency, change in collection criteria and the hierarchical structure:

Level I

X1

t

∣

∣θt ∼











Poisson(E1

t λ(t; θ
1)), t = 1, . . . , 14

Poisson(E1

t λ(t; θ
1)(1 − p1, − p2,)), t = 15, . . . , 33

Poisson(E1

t λ(t; θ
1)(1 − p1,)), t = 34, . . . , 42











for OPS case

X1

t

∣

∣θt ∼

{

Poisson(E2

t λ(t; θ
2)p1,), t = 19, . . . , 34

Poisson(E2

t λ(t; θ
2)), t = 35, . . . , 44

}

for Lithuanian case.

X1

t

∣

∣θt ∼ Poisson
(

Ek
t λ

(

t; θk
))

, k = 3, . . . , 5

for EGIG, UKOPA, NEB cases.
Unknown parameters are assumed to have lognormal distribution. Here Xk

t de-
notes the k-th sample which is age-dependent, Ek

t is the explosion, p1, and p2, are
probabilities of data falling under certain collection criteria (think about it as an ad-
justment factor resulting from different data collection criterion), also we made an
assumption that λ(t; θ) has two unknown parameters θk = (θk

1
, θk

2
) of which the first
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Fig. 2. Inferred and predicted failure frequencies for simple CDP and its hierarchical modification
for Lithuanian gas transmission.

is positive, hence has lognormal distribution, and the second is normally distributed.
Normality and log-normality are assumptions (could be changed by another) and the
sensitivity of them has not been investigated in this paper. Now we turn to the in-
ference for Lithuanian pipeline network. Due to the small size of the network and
the incident criterion used until 2004, the data is quite scattered and the inferences
based on it alone would be questionable. Therefore it is an advantage to be able to
support this small sample with the information contained in the data samples from
other databases.

When comparing the estimated trend (see Fig. 2, inferred zone), hierarchical model
generally provides wider credibility bounds, than obtained from non-hierarchical vari-
ant of CDP model (only considering Lithuanian case). This is due to the fact that
hierarchical structure of the model allows incorporating and quantifying additional
level of uncertainty, i.e. variation throughout different databases is now accounted as
well. In addition, two data points that were collected under new incident criterion
(since 2003) are less underestimated by hierarchical model.

3 Conclusions and further comments

In this paper we have tackled the task of including additional level of uncertainty into
the model of systems reliability. We briefly described the mathematical machinery
and illustrated it with three quite different examples. The implications of including
heterogeneity of the failure data are wide ranging – uncertainty due to heterogeneity
pierces every reliability concept not only failure rate. The easy-to-interpret Bayesian
modelling language serves well this purpose and enables to create complex models
with various degrees of uncertainty taken into account. We have demonstrated that
modelling of uncertainty due to data heterogeneity provides more realistic inferences
and thus gives us practical approach to make more informed decisions related to
reliability and vulnerability of various systems.
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REZIUMĖ

Hierarchinių Bajeso metodų taikymas energetinių tinklų patikimumui vertinti
T. Iešmantas, R. Alzbutas

Straipsnyje nagrinėjama energetikos objektų patikimumo duomenų heterogeniškumas. Dviems atve-
jams pademonstruotas hierarchinių Bajeso metodų taikymas ir įvertinta, kaip papildomas neapibrėž-
tumo lygmuo keičia patikimumo charakteristikų įverčius.

Raktiniai žodžiai: Bajeso patikimumo metodai, tinklai, heterogeniškumas, hierarchiniai Bajeso meto-
dai.
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