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Abstract. The paper considers normal approximation to the distribution of random sums
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Introduction

Assume that N denotes a non-negative integer-valued random variable (r.v.) with
the distribution:

P(N = m) = qm, 0 < qm < 1, m ∈ N0, N0 = {0, 1, 2, . . .}. (1)

In addition, let {X,Xj, j = 1, 2, . . .} be a family of independent standard normal
r.vs. with the distribution function

Φ(x) =
1√
2π

∫ x

−∞

e−
y2

2 dy, x ∈ R,

where R is the set of real numbers. Consider weighted random (compound) sum

ZN =

N
∑

j=1

µjX
2
j , (2)

where 0 < µj < ∞. Throughout, we assume that N is independent of {X,Xj, j =
1, 2, . . .}, and for definiteness, we suppose that Z0 = 0.

To define the mean and the variance of ZN , we first introduce the following com-
pound r.vs. TN,r:

TN,r =

N
∑

j=1

µr
j , r ∈ N, (3)

where 0 < µj < ∞, and N = {1, 2, . . .}. For definiteness, we assume T0,r = 0 for any
fixed r. Clearly, TN,0 = N .

It is easy to verify that the probability characteristics of TN,r are expressed through
the characteristics of non-random sum Tm,r =

∑m
j=1 µ

r
j , m ∈ N. For instance, the
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mean, second moment and variance are as follows

ETN,r =

∞
∑

m=1

Tm,rqm, ET 2
N,r =

∞
∑

m=1

T 2
m,rqm, DTN,r = ET 2

N,r−(ETN,r)
2. (4)

It’s well known, that the sum χ2
m =

∑m
j=1 X

2
j has a chi-square distribution with m

degrees of freedom. In addition, the density and characteristic functions of χ2
m are

pχ2
m
(x) =

{

2−m/2((m2 − 1)!)−1x
m
2
−1e−

1

2
x, x > 0,

0, x 6 0,

fχ2
m
(u) = Eeiuχ

2

m = (1− 2iu)−
m
2 , u ∈ R, (5)

where Γ (m) =
∫

∞

0
xm−1e−x dx is gamma function. Consequently,

Eχ2
m = m, Dχ2

m = 2m. (6)

Application of (4), (6) together with (8) in [2, p. 257] leads to

EZN = ETN,1, DZN = 2ETN,2 +DTN,1. (7)

In this paper, we are interested in the normal approximation for the distribution
of

Z̃N = (ZN −EZN )/
√

DZN , DZN > 0, (8)

that takes into consideration large deviations in the Cramér zone in the case where cu-
mulant method (see [6]) is used. In addition, this paper also considers the exponential
inequalities for the probabilities P(Z̃N > x), P(Z̃N 6 −x).

Since we are interested not only in the convergence to the normal distribution but
also in a more accurate asymptotic analysis of the distribution function FZ̃N

(x), we
must first find the suitable bound for the kth-order cumulants of (8). For that the
combinatorial method is used. In order to obtain upper bounds for Γk(Z̃N ), we must
impose conditions for the kth-order cumulants of the compound r.v. TN,1, which is
defined by (3). Consequently, we assume that TN,1 satisfies the condition (L): there
exist constants K > 0, ǫ > 0 such that

∣

∣Γk(TN,1)
∣

∣ 6 (1/2)k!Kk−2(DTN,1)
1+(k−2)ǫ, k = 2, 3, . . . . (L)

Define the abbreviations (a ∨ b) = max{a, b}, a, b ∈ R, 0 < µ = sup{µj , j =
1, 2, . . .} < ∞, 0 < µ̄ = inf{µj , j = 1, 2, . . . } < ∞.

Lemma 1. Suppose that the r.v. X is distributed according to the standard normal

law and that the r.v. TN,1 defined by (3) satisfies condition (L). Then

∣

∣Γk(Z̃N )
∣

∣ 6 k!/∆k−2
∗

, ∆∗ =
√

DZN/M∗, M∗ = 2
(

K(DTN,1)
ǫ ∨ 4µ2/µ̄

)

, (9)

k = 3, 4, . . . . Here DZN is defined by (7). In addition, the constants K, ǫ are defined

by condition (L), and DTN,1 is defined by (4).

Liet. matem. rink. Proc. LMS, Ser. A, 56, 2015, 36–41.



✐

✐

“LMD15_Kasparaviciute_Deltuva” — 2015/11/20 — 18:44 — page 38 — #3
✐

✐

✐

✐

✐

✐

38 A. Kasparavičiūtė, D. Deltuvienė

Since the accurate upper bounds (9) for the kth-order cumulants of the standard-
ized sum Z̃N have been derived, to prove theorems of large deviations and exponential
inequalities we have to use general lemmas presented in [1, 4], respectively, about ex-
ponential inequalities and large deviations for an arbitrary r.v. with zero mean and
unit variance.

We will use θ (with or without an index) to denote a value, not always the same,
that does not exceed 1 in modulus.

Theorem 1. Suppose that the r.v. X is distributed according to the standard normal

law and that the r.v. TN,1 defined by (3) satisfies condition (L). Then in the interval

0 6 x < ∆∗/24, the ratios of large deviations

1− FZ̃N
(x)

1− Φ(x)
= exp

{

L∗(x)
}(

1 + 24θ1f(x)(x + 1)/∆∗

)

,

FZ̃N
(−x)

Φ(−x)
= exp

{

L∗(−x)
}(

1 + 24θ2f(x)(x + 1)/∆∗

)

(10)

are valid, where

f(x) =
60(1 + 0, 02∆2

∗
exp{−(1− 24x/∆∗)

√

∆∗/26 })
1− 24x/∆∗

,

L∗(x) =

∞
∑

k=3

λ̃∗,kx
k + θ3

(

24x

∆∗

)3

. (11)

The coefficients λ̃∗,k (expressed by cumulants of (8)) coincide with the coefficients of

the Cramér–Petrov series (see, e.g. [3]) given by the formula λ̃∗,k = −b∗,k−1/k, where

the b∗,k are determined successively from the equations

j
∑

r=1

1

r!
Γr+1(Z̃N )

∑

j1+···+jr=j, ji>1

r
∏

i=1

b∗,ji =

{

1, j = 1,

0, j = 2, 3, . . . .

Observe, that for k = 2, 3, . . . , estimates are valid

|λ̃∗,k| 6
2

k

(

16

∆∗

)k−2

, L∗(x) 6
x3

2(x+∆∗/3)
, L∗(−x) > −8x3

∆∗

.

Theorem 2. Under the conditions of Theorem 1, the ratios

1− FZ̃N
(x)

1− Φ(x)
→ 1,

FZ̃N
(−x)

Φ(−x)
→ 1 (12)

hold for x > 0, x = o((DTN,1)
((1/2)−ǫ)/3) if DTN,1 → ∞ when 0 6 ǫ < 1/2.

Theorem 3. Suppose that the r.v. X is distributed according to the standard normal

law and that the r.v. TN,1 defined by (3) satisfies condition (L). Then for all x > 0,

P(±Z̃N > x) 6

{

exp{−x2/4}, 0 6 x 6 ∆∗,

exp{−x∆∗/4}, x > ∆∗.

Here P(±Z̃N > x) denotes P(Z̃N > x) or P(Z̃N 6 −x).
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It should be noted that the sum ZN defined by (2) is a partial sum in which
the deterministic index n ∈ N of the partial sum Zn =

∑n
j=1 µjX

2
j is replaced by

the r.v. N . Let us note, that the paper [5] considers the sum ζn =
∑n

s,t=1 as,tYsYt

of a real stationary Gaussian sequence {Yt, t = 1, 2, . . .} with the mean EYt = 0

and the covariance matrix R = [EYsYt]
t=1,n

s=1,n
, detR 6= 0. If µj , j = 1, 2, . . . , is a

spectrum of eigenvalues of matrix RA obtained in the solution of the nth degree

algebraic equation det(A − µR−1) = 0, where A = [as,t]
t=1,n

s=1,n
is a symmetric matrix,

then the distribution of Zn is the same as that of the r.v. ζn. Aforementioned paper
is addressed for asymptotic expansions in the large deviation Cramér zone for the
distribution and it’s density functions of the quadratic form of a stationary Gaussian
sequence ζn.

Remark 1. Assume N is non-random: N := n ∈ N. Then TN,r = Tn,r =
∑n

j=1 µ
r
j ,

r ∈ N, where TN,r is defined by (3). Thus in accordance with (4), we have ETN,r =
Tn,r, Γk(Tn,r) = 0, k = 2, 3, . . . . Consequently, taking into account (7), we get
EZn = Tn,1, DZn = 2Tn,2. Equality (16) in Section 1 yields

∣

∣Γk(Z̃n)
∣

∣ 6 k!/∆̃k−2
n , ∆̃n =

√

DZn/(2µ), k = 3, 4, . . . . (13)

The upper estimate (13) coincides with the estimate (1.12) presented in [5, p. 89].
In our considered instance, estimate (1.12) holds with the parameters ∆n := ∆̃n ,
B̄2

n := DZn. Note that ∆̃n = C
√

Tn,2, where C =
√
2/(2µ) > 0. In consideration of

the proof of Theorem 2, 2 the ratios (12) are valid for x > 0 such that x = o(T
1/6
n,2 ),

if Tn,2 → ∞.

1 Proofs of Lemma 1 and Theorems 1, 2, 3.

Proof of Lemma 1. First, note that the kth-order cumulants of χ2
m =

∑m
j=1 X

2
j are

Γk(χ
2
m) =

1

ik
dk

duk
ln fχ2

m
(u)

∣

∣

∣

∣

u=0

= 2k−1(k − 1)!m, k = 1, 2, . . . . (14)

Aforementioned equality is obtained due to the characteristic function (5) and defi-
nition of the kth-order cumulants (see, e.g. (1.31) in [6, p. 8]).

Recall that Tm,k =
∑m

j=1 µ
k
j , 0 < µj < ∞, and qm is defined by (1). Since N is

independent of the i.i.d. r.vs. {X,Xj, j = 1, 2, . . .}, given (5) and (14), we derive
that the characteristic function

fZN
(u) = EeiuZN =

∞
∑

m=0

e
∑

m
j=1

ln f
χ2
1

(µju)
qm =

∞
∑

m=0

e
∑

∞

k=1

1

2k
Tm,k(2u)

k

qm (15)

of (2) exists if the kth-order cumulants (14) exist. For a detailed calculations see, e.g.
[2, p. 258].

Observe that fZN
(u)|u=0 = 1 and (dm/dym) ln y|y=1 = (−1)m−1(m − 1)!, m =

1, 2, . . . . Thus, according to (15) and Lemma 5.6 in [3], together with definitions of
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the kth-order moments and cumulants, we can assert that for all k = 1, 2, . . . ,

Γk(ZN ) =
dk

ikduk
ln fZN

(u)

∣

∣

∣

∣

u=0

= k!2k
∑∗

1

(−1)m−1(m− 1)!

m1! · · · · ·mk!

·
k
∏

j=1

(

∑∗

2

E(T η1

N,1 · · · · · T
ηj

N,j)

2ηη1! · η2! · · · · · ηj !

j
∏

n=1

(

1

n

)ηn
)mj

. (16)

where E(T η1

N,1 · · · · ·T
ηj

N,j) =
∑

∞

s=0(T
η1

s,1 · · · · ·T
ηj

s,j)qs, Ts,j =
∑s

r=1 µ
j
r, j = 1, 2, . . . . Here

summation
∑

∗

1 is carried out over all non-negative integer solutions (m1,m2, . . . ,mk)
of the equation m1 + 2m2 + · · · + kmk = k, m1 + m2 + · · · + mk = m, where 0 6

m1, . . . ,mk 6 k, and 1 6 m 6 k. In addition,
∑

∗

2 is taken over all non-negative
integer solutions (η1, . . . , ηj) of the equation η1+2η2+· · ·+jηj = j, η1+η2+· · ·+ηj =
η, where 0 6 η1, . . . , ηj 6 j, and 1 6 η 6 j.

Because of the equality

k!2k
∑∗

1

(−1)m−1(m− 1)!

m1! · · · · ·mk!

k
∏

j=1

(

∑∗

2

ET η
N,2

2ηη1! · · · · · ηj !

j
∏

n=1

(

1

n

)ηn
)mj

= k!2k
∑∗

1

Γm(TN,2)

2mm1! · · · · ·mk!

k
∏

j=1

(

1

j

)mj

,

and inequalities T η1

N,1 6 µ̄−η1T η1

N,2, T
ηj

N,j 6 µ(j−2)ηjT
ηj

N,2 as j > 2, where 0 < µ̄ =
inf{µj , j = 1, 2, . . .} < ∞, 0 < µ = sup{µj , j = 1, 2, . . .} < ∞, we have that the
inequality

∣

∣Γk(ZN )
∣

∣ 6 k!(2µ)k
∑∗

1

|Γm(TN,2)|
m1! · · · · ·mk!

(2µ)m1−2mµ̄−m1 , k = 1, 2, . . . , (17)

is valid. Consequently, from (17), (L) together with equality
∑

∗

3(m1 + · · ·+mk−1)!/
(m1!· · · · ·mk−1!) = 2k−1 − 1, k > 2, and |Γm(TN,2)| 6 µm|Γm(TN,1)|, m = 1, 2, . . . ,
follows that

∣

∣Γk(ZN )
∣

∣ 6 k!(2µ)k−2
ETN,2 + k!(2µ)kDTN,1

∑∗

3

m̃!(K1(DTN,1)
ǫ)m̃−2(2µ)m1

(m1! · · · · ·mk−1!)2(4µ)m̃µ̄m1

,

6 k!DZNM∗, (18)

where DZN and M∗ are defined, accordingly, by (7) and (9). Here
∑

∗

3 is taken over
all the non-negative integer solutions (m1,m2, . . . ,mk−1) of the equation m1+2m2+
· · · + (k − 1)mk−1 = k, m1 +m2 + · · · + mk−1 = m̃, where 0 6 m1, . . . ,mk−1 6 k,
2 6 m̃ 6 k.

To complete the proof of Lemma 1, it is sufficient to use (18), and then by noting
that Γk(Z̃N ) = (DZN )−k/2

Γk(ZN ), k = 2, 3, . . . , we arrive at (9). Here Z̃N is defined
by (8). ⊓⊔

Proof of Theorem 1. Theorem 1 is proved using Lemma 1 and follows directly from
the general Lemma 2.3 (Rudzkis, Saulis, Satulevičius, 1978) on large deviations (see,
e.g. in [6, p. 18]). Clearly, Z̃N satisfies Statulevičius’ condition (see condition (Sγ),
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e.g. in [6, p. 16]) with the parameters, γ = 0, ∆ := ∆N . Accordingly, Lemma 2.3
yields the assertion of Theorem 1. ⊓⊔

Proof of Theorem 2. The proof of Theorem 2 follows immediately if we use the
definition of L∗(x) by relation (11). We shall prove that L∗(x) → 0 and x/∆∗ → 0 as
∆∗ → ∞, where ∆∗ is defined by (9). It follows that

∆∗ > C1(DTN,1)
(1/2)−ǫ or ∆∗ > C2(DTN,1)

1/2,

accordingly, if M∗ 6 2K(DTN,1)
ǫ or M∗ 6 8µ2/µ̄. Here C1 = (2K)−1 > 0, C2 =

µ̄/(8µ2) > 0, 0 < µ = sup{µj , j = 1, 2, . . .} < ∞, 0 < µ̄ = inf{µj, j = 1, 2, . . .} < ∞,
and M∗ is defined by (9). Thus ∆∗ → ∞ as DTN,1 → ∞ when 0 6 ǫ < 1/2.
Further, taking into account estimate (9), we obtain that

λ∗,3x
3 = Γ3(Z̃N )x3/6 = o(1), x/∆∗ = o((DTN,1)

−2((1/2)−ǫ)/3),

for all x = o((DTN,1)
((1/2)−ǫ)/3) with 0 6 ǫ < 1/2, as DTN,1 → ∞. Thus, L∗(x) → 0

as DTN,1 → ∞ when 0 6 ǫ < 1/2. ⊓⊔

Proof of Theorem 3. The proof of Theorem 3 is obtained by virtue of general
Lemma 2.4 (Bentkus, Rudzkis, 1980) in [6, p. 19], where the inequality (2.12) holds
with H = 2, ∆ := ∆N , γ = 0. ⊓⊔
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REZIUMĖ

Atsitiktinio dėmenų skaičiaus Gauso atsitiktinių dydžių kvadratų sumos didžiųjų
nuokrypių teoremos
A. Kasparavičiūtė, D. Deltuvienė

Šiame darbe yra nagrinėjama atsitiktinio dėmenų skaičiaus nepriklausomų Gauso atsitiktinių dydžių
kvadratų su svoriniais koeficientais sumos pasiskirstymo funkcijos aproksimacija normaliuju dėsniu,
didžiųjų nuokrypių Kramero zonoje.

Raktiniai žodžiai: kumuliantų metodas, didieji nuokrypiai, Gauso sekos.
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