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Abstract. A nonlinear mathematical model describing the kinetics of a bimolecular het-
erogeneous catalytic reaction proceeding on a supported catalyst is studied. The model is
based on the Langmuir–Hinshelwood surface reaction mechanism assuming that all species
are well-mixed. The catalytic surface size influence on the catalytic reactivity and product
concentration is investigated numerically for different arrangements of the adsorption sites.
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Introduction

In order for the catalytic reaction on a surface to take place, one or more of the re-
actants must diffuse to the catalyst surface and adsorb onto it forming one or more
adsorbates. After reaction of the adsorbed molecules into a product, the product
molecules desorb and diffuse away from the adsorbent. A part of the adsorbed re-
actant molecules can desorb from the adsorbent. In case of the weak surface and
reactant interaction molecules of the reactant can diffuse along the surface before the
conversion into the product. The catalyst can consist of small active catalyst par-
ticles placed on inactive in reaction support. One of kinetic effects associated with
small catalyst particles on a support is the spillover effect. Spillover is an effect of
the heterogeneous surface reactions when inactive in reactions surface regions notably
influence the kinetics of the overall catalytic process [5] The surface parts which are
inactive in the surface reaction can be active for adsorption-desorption process and
increase or decrease concentrations of substrate or product particles on active parts
of the surface through the diffusion of the adsorbed reactant particles across the in-
terface between the catalyst particles and the support [1, 2, 3, 5]. In [4] the kinetics of
two-molecular catalytic reaction proceeding on a composite catalyst consisting from
the active and inactive in reaction parts was studied using the coupled systems of
parabolic PDEs and ODEs. The aim of this paper is to study the influence of the
catalytic surface size on the catalytic reactivity and product concentration.
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1 The mathematical model

We study the two-molecular surface reaction proceeding on a supported catalyst fol-
lowing the Langmuir–Hinshelwood mechanism and Gorban’s diffusion mechanism in
case of the well-mixed species assumption:

A1 + S
k1i

⇄

k
−1i

A1S, A2 + S
k2i

⇄

k
−2i

A2S, A1S +A2S
k3i

→A1A2 + 2S, i = 1, 2, 3.

Here S is the free adsorption site, B = A1A2 – the product. The catalyst is
composed of three active and inactive in reaction regions S1, S2, S3. x∗

1 and x∗

2

(x∗

1 < x∗

2) are the catalyst-support interface points of the interval [0, 1]. kij and
k−ij are the adsorption and desorption rates constants of reactant Ai, i = 1, 2, in
region Sj , j = 1, 2, 3. k3j are the reaction between adsorbates A1S and A2S in
region Sj , j = 1, 2, 3, rate constants.

Let sj , j = 1, 2, 3, be densities of the active or inactive in reaction sites of strip Sj .
Functions uij present density of particles of species AiS, i = 1, 2, bound to sites that
are located in region Sj , j = 1, 2, 3. Assume that λj+1,i j , i = 1, 2, j = 1, 2, are the
constants of the jump rate via the catalyst-support interfaces x∗

3−j of an adsorbed Ai

particle from the position x∗

3−j + 0 into the nearest-neighbour vacant site x∗

3−j − 0.
Similarly, λj,i j+1, i = 1, 2, j = 1, 2, are the constants of the jump rate via the
catalyst-support interfaces of an adsorbed Ai particle from the position x∗

3−j − 0 into
the nearest-neighbour free site x∗

3−j + 0.

Dynamics of the concentration of the reactants and product is described by the
system:
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






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



























a′1 = −(1− x∗

2)
(

k11a1(s1 − u11 − u21)− k−11u11

)

− (x∗

2 − x∗

1)
(

k12a1(s2 − u12 − u22)− k−12u12

)

− x∗

1

(

k13a1(s3 − u13 − u23)− k−13u13

)

, a1(0) = a10;

a′2 = −(1− x∗

2)
(

k21a2(s1 − u11 − u21)− k−21u21

)

− (x∗

2 − x∗

1)
(

k22a2(s2 − u12 − u22)− k−22u22

)

− x∗

1

(

k23a2(s3 − u13 − u23)− k−23u23

)

, a2(0) = a20;

b′ = (1− x∗

2)k31u11u21 + (x∗

2 − x∗

1)k32u12u22 + x∗

1k33u13u23,

b(0) = 0.

(1)

We get the following equations for densities uij :











u′

11 = k11a1(s1 − u11 − u21)− k−11u11 − k31u11u21

+ (1− x∗

2)
−1

(

λ1,12u12(s1 − u11 − u21)− λ2,11u11(s2 − u12 − u22)
)

,

u11(0) = 0,

(2)











u′

21 = k21a2(s1 − u11 − u21)− k−21u21 − k31u11u21

+ (1− x∗

2)
−1

(

λ1,22u22(s1 − u11 − u21)− λ2,21u21(s2 − u12 − u22)
)

,

u21(0) = 0,

(3)
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

















u′

12 = k12a1(s2 − u12 − u22)− k−12u12 − k32u12u22

+ (x∗

2 − x∗

1)
−1

(

λ2,11u11(s2 − u12 − u22)− λ1,12u12(s1 − u11 − u21)

+ λ2,13u13(s2 − u12 − u22)− λ3,12u12(s3 − u13 − u23)
)

,

u12(0) = 0,

(4)



















u′

22 = k22a2(s2 − u12 − u22)− k−22u22 − k32u12u22

+ (x∗

2 − x∗

1)
−1

(

λ2,21u21(s2 − u12 − u22)− λ1,22u22(s1 − u11 − u21)

+ λ2,23u23(s2 − u12 − u22)− λ3,22u22(s3 − u13 − u23)
)

,

u22(0) = 0,

(5)











u′

13 = k13a1(s3 − u13 − u23)− k−13u13 − k33u13u23

+ (x∗

1)
−1

(

λ3,12u12(s3 − u13 − u23)− λ2,13u13(s2 − u12 − u22)
)

,

u13(0) = 0,

(6)











u′

23 = k23a2(s3 − u13 − u23)− k−23u23 − k33u13u23

+ (x∗

1)
−1

(

λ3,22u22(s3 − u13 − u23)− λ2,23u23(s2 − u12 − u22)
)

,

u23(0) = 0.

(7)

Problem (1)–(7) possesses mass conservation laws – the sum of the free, adsorbed,
converted into a product reactant equals the initial amount of the reactant:

a1 + b+
(

1− x∗

2

)

u11 +
(

x∗

2 − x∗

1

)

u12 + x∗

1u13 = a10,

a2 + b+
(

1− x∗

2

)

u21 +
(

x∗

2 − x∗

1

)

u22 + x∗

1u23 = a20. (8)

The first characteristic that we examine in this paper is the turn-over rate –
the catalyst surface specific conversion rate of the reactants molecules into product
molecules defined by the formula

z =
k33x

∗

1u13u23 + k32(x
∗

2 − x∗

1)u12u22 + k31(1− x∗

2)u11u21

x∗

1s3 + (1− x∗

2)s1 + (x∗

2 − x∗

1)s2
. (9)

The second important characteristic is the product concentration.
Problem (1)–(7) is written in dimensionless form. In what follows all variables

and parameters are non-dimensional.

2 Numerical results

The standard MATLAB ODE solver ode45 was used in our numerical calculations.
The following values of parameters were used in calculations: kij = 0.017, k−ij =
0.0017, k3j = 0.1, j = 1, 2, 3, i = 1, 2; λj+1,i j = λj,i j+1, j, i = 1, 2; a01 = a02 = 1. In
all cases laws (8) were fulfilled with 10−7 accuracy.

All calculations were performed for two different arrangements of the adsorption
sites (a) s1 = s2 = s3 = 1 and (b) s2 = s1(1 + x∗

1 − x∗

2)/(x
∗

2 − x∗

1), s1 = s3 = 1.
In the second case, the total numbers of the active and inactive sites are equal, i.e.
x∗

1s3 + (1 − x∗

2)s1 = (x∗

2 − x∗

1)s2. Numerical results are given for such pairs (x∗

1;x
∗

2)
of the catalyst-support interface points x∗

1 and x∗

2:














1−

(

1

12
,
11

12

)

, 2−

(

1

8
,
7

8

)

, 3−

(

1

6
,
5

6

)

, 4−

(

7

32
,
25

32

)

,

5−

(

13

48
,
35

48

)

, 6−

(

31

96
,
65

96

)

, 7−

(

3

8
,
5

8

)

, 8−

(

5

12
,
7

12

)

.

(10)
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Fig. 1. Dependence of catalytic reactivity z (a) and product concentration b (b) on catalytic
surface size (some of the pairs (10)) in case s1 = s2 = s3 = 1 and k31 = k33 = 0.1,

k32 = k11 = k21 = k13 = k23 = 0.
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Fig. 2. Influence of the catalytic surface size (some of the pairs (10)) on turn-over rate z (a) and
product concentration b (b) in case s1 = s3 = 1, s2 = s1(1 + x∗

1
− x∗

2
)/(x∗

2
− x∗

1
) and

k31 = k33 = 0.1, k32 = k11 = k21 = k13 = k23 = 0.

We investigate the adsorption of both reactants A1, A2 only on the inactive in
reaction support and conversion of the reactants molecules into the product molecules
on the active in reaction catalyst surface.

Firstly we study the case where both reactants adsorb on the interval (x∗

1, x
∗

2),
i.e. k11 = k21 = k13 = k23 = 0 and the reaction occurs on the intervals [0, x∗

1) and
(x∗

2, 1], i.e. k32 = 0. Fig. 1 presents the dependence of turn-over rate z and product
concentration b on the active domain [0, x∗

1)∪(x
∗

2, 1] size for densities s1 = s2 = s3 = 1.
The number of active adsorption sites grows and of inactive adsorption sites drops as
x∗

1 increases and x∗

2 decreases. The conversion rate is non-monotonic active interval
length and time functions. Maximum of z strongly depends on x∗

1 and x∗

2, but weakly
on time t, e.g. it is equal 0.0086 at t = 105, 0.0056 at t = 96 and 0.0016 at t = 145 for
curves 2, 4 and 8 (Fig. 1(a)), respectively. The product concentration is monotonically
increasing time function, but non-monotonic active in reaction domain size function.
The peak product concentration is reached for x∗

1 ≈
7

32
, x∗

2 ≈
25

32
(curve 4, Fig. 1(b)).

The product concentration falls as the active domain increases (curves 5–8).

Fig. 2 demonstrates the influence of the active domain [0, x∗

1) ∪ (x∗

2, 1] size on the
turn-over rate and product concentration for densities s2 = s1(1+x∗

1−x∗

2)/(x
∗

2 −x∗

1),
s1 = s3 = 1. Both functions, z(t) and b(t), grow as the size of active interval increases
(for fixed time x∗

1 increases and x∗

2 decreases). The differences between maximal values
of conversion rate z are much smaller than those in Fig. 1(a) corresponding to the

Liet. matem. rink. Proc. LMS, Ser. A, 56, 2015, 42–47.



✐

✐

“LMD15_Katauskis_Sakalauskas” — 2015/11/24 — 17:06 — page 46 — #5
✐

✐

✐

✐

✐

✐

46 P. Katauskis, J. Sakalauskas

0 200 400 600 800 1000

0.000

0.002

0.004

0.006

(a)

z

t

3

7

8

6

4

5

3

4
56

78

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0
(b)

b

t

7

3

8
5

4

6

Fig. 3. Effect of the catalytic surface size (some of the pairs (10)) on catalytic reactivity z (a) and
product concentration b (b) for s2 = s1(1 + x∗

1
− x∗

2
)/(x∗

2
− x∗

1
), s1 = s3 = 1 and k32 = 0.1,

k31 = k33 = k12 = k22 = 0.

same size of active in reaction domain, e.g. maximal values are z(104) = 0.00524
(curve 3, Fig. 2(a)) and z(83) = 0.00405 (curve 8, Fig. 2(a)). We observe that in this
case the values of z is remarkably smaller compared to those corresponding to the
same small values of active interval length of the case s1 = s2 = s3 = 1 for small t
(curves 3 of Figs. 1(a) and 2(a)). For small t and long active interval the conversion
rate z behaves vice-versa (curves 6 and 8).

Fig. 3 shows the dynamics of z(t) and b(t) for densities s2 = s1(1+x∗

1−x∗

2)/(x
∗

2−

x∗

1), s1 = s3 = 1, when the active in reaction interval is (x∗

1, x
∗

2) and both reactants can
adsorb on the support [0, x∗

1) ∪ (x∗

2, 1]. In this case k12 = k22 = 0 and k31 = k33 = 0.
The catalytic reactivity is non-monotonic active interval length and time function. For
long active interval function z(t) grows in time, possesses the small maximum and then
slowly decreases to zero (curve 3, Fig. 3(a)). The turn-over rate more quickly grows
in time, reaches a large maximum value and sharply falls as the active in reaction
domain decreases (curves 6–8, Fig. 3(a)). Fig. 3(a) demonstrates that z(t) as function
of the active interval length increases for small time, but it decreases for large time as
the active zone narrows – number of the active and inactive adsorption sites grows as
x∗

1 increases and x∗

2 decreases. The product concentration is monotonically increasing
time function and monotonically decreasing function of the active in reaction domain
size (Fig. 3(b)). Concentration b(t) rapidly reaches a saturation value when the active
interval is short (curves 7, 8). The growth of b(t) in time is slow if the number of
active in reaction sites is small (curve 3, Fig. 3(b)).

3 Conclusions

The bimolecular surface reaction proceeding on the supported catalyst was studied
numerically by using the well-mixed species model for different arrangements of ad-
sorption sites. The size of the active in reaction domain and the arrangement of
adsorption sites strongly influence the catalytic reactivity and product concentration.
The results of numerical investigation are the following: (a) In case where both reac-
tants adsorb only on interval (x∗

1, x
∗

2) and s1 = s2 = s3 = 1 there exists the optimal
active domain size for the product concentration. (b) If active interval is (x∗

1, x
∗

2)
and densities are s2 = s1(1 + x∗

1 − x∗

2)/(x
∗

2 − x∗

1), s1 = s3 = 1 the turn-over rate
grows for small time and decreases for large time as the size of the active domain
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decreases. (c) z is non-monotonic in time, it reaches a maximum and tends to zero
as time increases.
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REZIUMĖ

Monomerų reakcijų kompozitinių katalizatorių paviršiuje skaitinis tyrimas: gerai
išmaišytų medžiagų modelis
P. Katauskis, J. Sakalauskas

Nagrinėjamas netiesinis modelis aprašantis heterogeninę katalitinę dviejų reagentų reakciją, vyk-
stančią kompozitinių katalizatorių paviršiuje. Modelis pagrįstas Langmiūro ir Hinšelvudo paviršinių
reakcijų mechanizmu, laikant, kad reakcijoje dalyvaujančios medžiagos yra tolygiai pasiskirsčiusios.
Tiriama aktyvios katalizatoriaus paviršiaus dalies dydžio įtaka katalitiniam reaktyvumui ir produkto
koncentracijai, esant skirtingam adsorbcijos centrų išsidėstymui.

Raktiniai žodžiai: paviršinė reakcija, adsorbcija, desorbcija, spiloveris.
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