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Abstract. We prove that each Feller transition probability is the one-dimensional distri-
bution of some stochastically continuous random function. We also introduce the notion
of a regular random function and show, on one hand, that every random function has a
regular modification, and on the other hand, that the composition of independent regular
stochastically continuous random functions is stochastically continuous as well.

Keywords: Markov chains, random functions, stochastic continuity.

1 Introduction and main results

In this paper we continue the investigation of general Markov chains, begun in [4].
This time we assume that the state space E of the chain is a separable metric space
and the mapping x 7→ P (x, ·) (where P denotes the transition probability of the chain)
is a continuous function from E to Π(E), the space of all probabilities on E, endowed
with the topology of weak convergence. In such a case we call P a Feller transition

probability and the corresponding Markov chain a Feller chain.
Feller chains are closely related to random functions. If E and F are two separable

metric spaces then by a random function from E to F we call a measurable function
f : Ω×E → F , where (Ω,P) is some fixed probability space. If f is a random function,
we denote its value at (ω, x) by f(ω)x. The argument ω is often omitted and then
fx is a random element of F . If ω is fixed then f(ω) is an ordinary function from E
to F . It is called a realization of f .

Each random function f induces a transition probability from E to F defined by

P (x,B) = P{fx ∈ B}, B ⊂ F measurable. (1)

We call P the (one-dimensional) distribution of f . It is well-known that if F is a
Borel subset of some Polish space (for simplicity we call such F a Borel space) then
each transition probability from E to F is the distribution of some random function.

A random function f is called continuous if all its realizations are continuous
functions. It is easily seen that the distribution of any continuous random function
is a Feller transition probability. [1] considered the inverse problem and gave the
conditions for existence of a continuous random function with given distribution P .
However, in many cases such random function does not exist.

Example 1. Let E = F = [0; 1] and P (x, ·) = (1 − x)δ0 + xδ1, where δy denotes the
probability concentrated at y. Clearly, P is a Feller kernel. Suppose that it is the
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distribution of a continuous random function f , defined on some probability space
(Ω,P). The set N = {(ω, x) | 0 < f(ω)x < 1} is measurable and all its sections
N(·, x) are null sets; therefore (P×λ)(N) = 0, where λ denotes the Lebesgue measure
on E. Then there exists a measurable W with P(W ) = 1 such that, for all ω ∈ W ,
f(ω) is a continuous function and λ(N(ω, ·)) = 0.

If ω ∈W then the set {x | 0 < f(ω)x < 1} is open and of null Lebesgue measure,
i.e. it is empty. Hence f(ω) is a continuous function taking only 0 and 1 values.
Since E is connected, f(ω) is constant. Therefore there exists a measurable partition
(W0,W1) of W such that f(ω)x = 0 for all ω ∈ W0 and all x, and f(ω)x = 1 for all
ω ∈W1 and all x. Then x = P{fx = 1} = P(W1) for all x ∈ [0; 1], a contradiction.

Example 1 shows that the concept of a continuous random function is too strong
for analysis of Feller transition probabilities. It appears that the right notion is that
of a stochastically continuous random function. f is called stochastically continuous
if

xn → x⇒ fxn →p fx, (2)

where →p denotes convergence in probability. Clearly, the distribution of a stochas-
tically continuous random function is a Feller transition probability (because con-
vergence in probability implies convergence in distribution). The following converse
statement is not so obvious.

Theorem 1. If E is a separable metric space and F a Borel space then each Feller

transition probability from E to F is the distribution of some stochastically continuous

random function.

A usual way to define a Markov chain via random functions is the following.
We start from some random function f from E to E, defined on some probability
space (I, λ), where I is a separable metric space. Next, we take an iid sequence (ǫi)
of random elements of I, defined on some probability space (Ω,P) and distributed
according λ, and set fi(ω)x = f(ǫi(ω))x. Then any sequence (fi · · · f1x), x ∈ E, is a
Markov chain with transition probability P , which is the distribution of the random
function f . Random functions fi · · · f1 are called forward iterations of f .

It is easily proved that if f is stochastically continuous then all fi, as well as all
iterations fi · · · f1, are stochastically continuous. Indeed, the first assertion follows

from the fact that (fx, fx′)
d
= (f(ǫi)x, f(ǫi)x

′) while the second from Theorem 3
below. However, it is not true, in general, that the composition of stochastically
continuous functions is stochastically continuous. Let us look at this phenomenon
more closely.

Let E, F and G be separable metric spaces, f a random function from E to F and
g a random function from F to G, both defined on the same probability space (Ω,P).
The function (ω, x) 7→ g(ω)f(ω)x is called the composition of f and g and is denoted
by gf . It is measurable as a superposition of measurable functions (ω, x) 7→ (ω, f(ω)x)
and (ω, y) 7→ g(ω)y. Therefore gf is a random function from E to G.

We are interested in whether gf is stochastically continuous if f and g are stochas-
tically continuous. Let xn → x, then fxn →p fx and so gf is stochastically contin-
uous if Yn →p Y implies gYn →p gY . This condition is in fact necessary, if we want
gf to be stochastically continuous for any stochastically continuous random func-
tion f . Indeed, we can take E = N ∪ {∞} and define f(ω)n = Yn(ω) for n ∈ N and

Liet. matem. rink. Proc. LMS, Ser. A, 56, 2015, 48–53.



✐

✐

“LMD15_Kazakevicius” — 2015/11/20 — 18:49 — page 50 — #3
✐

✐

✐

✐

✐

✐

50 V. Kazakevičius

f(ω)∞ = Y (ω). Hence we can forget about g and investigate, for what stochastically
continuous functions f it is true that

Xn →p X ⇒ fXn →p fX. (3)

It is easily shown that (3) holds for any continuous f , but this result is not what
we are seeking for. However, it appears that (3) fails to be true if f is not continuous.
Here is a typical example.

Example 2. Let E = F = [0; 1], Ω = (0; 1), P be the Lebesgue measure on Ω and

f(ω)x =

{

1 for x = ω;

0 otherwise.

For ω ∈ Ω set Xn(ω) = (ω − 1/n)+ and X(ω) = ω. Then Xn → X , but fXn = 0
while fX = 1.

Hoffmann-Jørgensen [3] considered the same problem and gave conditions on X
for (3) to hold. It is required, roughly speaking, that almost surely X would be
a continuity point of f . However, this result does not explain why iterations of a
stochastically continuous random function are stochastically continuous. The first
idea that comes into mind is to consider an independence assumption.

For any random function f , we denote by σ(f) the σ-algebra generated by the
random elements fx, x ∈ E. We say that a random element U of an arbitrary separa-
ble metric space is independent of f if the σ-algebras σ(U) and σ(f) are independent.
If g is another random function, we call it independent of f if σ(f) and σ(g) are
independent.

It is easily seen that iterations of a random function f are compositions of inde-
pendent copies of f . Therefore we can ask if the composition of arbitrary independent
stochastically continuous random functions is stochastically continuous. Similarly to
above, the problem is reduced to the following question: does (3) hold if f is stochas-
tically continuous and (Xn) independent of f (then, of course, X is also independent
of f)? Unfortunately, the answer still is ‘no’: in Example 2 (Xn) is independent of f ,
because each fx is a degenerate random variable (almost surely fx = 0).

An appropriate solution to the problem (see Theorems 2–3 below) is given by the
notion of a regular random function. We call a random function f regular if there
exists a separable metric space I, a Borel function f̃ : I × E → F and a random
element ǫ of I such that σ(ǫ) = σ(f) and, for all (ω, x),

f(ω)x = f̃
(

ǫ(ω)
)

x. (4)

Of course, f̃ is a random function from E to F defined on the probability space (I, λ),
where λ is the distribution of ǫ. Moreover, the distributions of f and f̃ coincide. It
is easily seen that all iterations of an arbitrary random function on (I, λ) are regular,
provided I is a separable metric space.

Regularity implies that σ(f) is countably generated. This allows us to construct
non-regular random functions, see Example 3 below. We do not have any example of
a non-regular random function f with σ(f) countably generated.
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Example 3. Let f be the random function from Example 2. Then fx = 1{x} and σ(f)
is generated by the one-points sets {x}, x ∈ E. It is easily shown that σ(f) is the set
of all W ⊂ Ω such that either W or W c is countable. Suppose that σ(f) is generated
by some sequence (Wi). We can assume that all Wi are countable. Set W ∗ =

⋃

iWi.
Then the σ-algebra

F =
{

W |W ⊂W ∗ or W c ⊃W ∗c
}

contains all Wi and therefore σ(f) ⊂ F . However, {x} 6∈ F for any x 6∈ W ∗, a con-
tradiction.

A random function f ′ is called a modification of a random function f if, for all x,
almost surely f ′x = fx.

Theorem 2. If F is a Borel space then each random function from E to F has a

regular modification.

Theorem 3. 1. If f is a regular stochastically continuous function from E to F and

(Xn) a sequence of random elements of E, independent of f , then (3) holds.

2. If f and g are independent stochastically continuous random functions and g
is regular then gf is stochastically continuous.

2 Proofs

Proof of Theorem 1. Let F̄ be a completion of the metric space F , ι denote the
morphism x 7→ x from F to F̄ and P̄ (x, ·) = ι∗P (x, ·). Since ι is continuous, the dual
morphism ι∗ from Π(F ) to Π(F̄ ) is also continuous. Hence P̄ is a Feller transition
probability from E to F̄ .

Fernique [2] has shown that there exists a stochastically continuous random func-
tion µ 7→ Yµ from Π(F̄ ) to F̄ such that the distribution of Yµ is µ. Denote

f̄(ω)x = YP̄ (x,·)(ω).

If xn → x then P̄ (xn, ·) → P̄ (x, ·) and therefore

f̄xn = YP̄ (xn,·) →p YP̄ (x,·) = f̄x.

Hence f̄ is stochastically continuous. Moreover, the distribution of f̄x is P̄ (x, ·).
Since F is a Borel subset of F̄ , equality

f(ω)x =

{

f̄(ω)x if f̄(ω)x ∈ F ;

y∗ otherwise;

defines a random function from E to F ; here y∗ is a fixed point in F . Since
P{f̄x ∈ F} = P̄ (x, F ) = 1, each fx almost surely equals f̄x; hence f is stochas-
tically continuous. Moreover, for all Borel B ⊂ F ,

P{fx ∈ B} = P{f̄x ∈ B} = P̄ (x,B) = P (x,B);

therefore the distribution of fx is P (x, ·).
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Proof of Theorem 2. Let L0(F ) denote the set of all equivalence classes (mod P) of
random elements of F endowed with the topology of convergence in probability. It is
well-known that it can be metrized by the metric ρ(Y, Y ′) = Ed(Y, Y ′), where d is a
bounded metric of F . Let F̄ denote the completion of F ; then F is a Borel subset
of F̄ .

By Theorem 4.2.1 of [5], the set {fx | x ∈ E} is separable, therefore there exists
a sequence (Ani | i ≥ 1), n ≥ 1, of measurable partitions of E such that diam{fx |
x ∈ Ani} ≤ 2−n for all n, i ≥ 1. Without loss of generality we can assume that
the nth partition is finer than the preceding, i.e. for each i there exists a j with
Ani ⊂ An−1,j . In each Ani fix some xni so that xn−1,j ∈ Ani ⊂ An−1,j implies
xni = xn−1,j . Let pn denote the function from E to E, which maps each x ∈ Ani

to xni. Define fn(ω)x = f(ω)pn(x). For all Borel B ⊂ F , the sets

{

(ω, x) | fn(ω)x ∈ B
}

=
⋃

i

(

{fxni ∈ B} ×Ani

)

is measurable, therefore fn are random functions from E to F . By construction, for
each fixed xmi, pn(xmi) = xmi for n ≥ m. This yields f ′(ω)xmi = f(ω)xmi for all ω,
m and i.

Define

f ′(ω)x =

{

limn→∞ fn(ω)x if the limit exists;

y∗ otherwise;

where y∗ is a fixed point in F . It is easily seen that fn are also random functions
from E to F̄ . Since F̄ is complete, the set

C =
{

(ω, x) | fn(ω)x converge in F̄
}

is measurable and (ω, x) 7→ lim fn(ω)x is a measurable function from C to F̄ . Then
the set

{

(ω, x) | fn(ω)x converge in F
}

=
{

(ω, x) ∈ C | lim fn(ω)x ∈ F
}

is also measurable and therefore f ′ is a random function from E to F̄ . Since all its
values lie in F , it is a random function from E to F .

For all x ∈ E,
∑

n ρ(fnx, fx) ≤
∑

n 2
−n <∞, therefore almost surely fnx → fx.

Then f ′ is a modification of f .
Let α denote some bijection from N

2 to N. Let sj = xmi for j = α(m, i),

ψn(x, y1, y2, . . . ) = yα(n,i) for x ∈ Ani

and

ψ(x, y1, y2, . . . ) =

{

limn→∞ ψn(x, y1, y2, . . . ) if the limit exists;

y∗ otherwise.

ψn are measurable functions from E × F∞ to F and

fn(ω)x = ψn

(

x, f(ω)s1, f(ω)s2, . . .
)

for all (ω, x). Then ψ is measurable as well and, for all (ω, x),

f ′(ω)x = ψ
(

x, f(ω)s1, f(ω)s2, . . .
)

.
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Hence f ′ is regular: we can write it in the form (4) with I = F∞, ǫ = (fsi) and
f̃(y1, y2, . . . )x = ψ(x, y1, y2, . . . ); moreover, σ(f ′) = σ(ǫ), because fsi = f ′si for all i.

Proof of Theorem 3 1. For some sequence nk → ∞, Xnk
→ X almost surely, hence

X is measurable with respect to the completion of the σ-algebra σ(Xn | n ≥ 1) and
therefore (Xn, X) is independent of f . Let d denote a bounded metric in F . By
regularity, Ed(fXn, fX) = Eϕ(Xn, X), where ϕ(x1, x2) = Ed(fx1, fx2). Since f is
stochastically continuous, xn → x implies ϕ(xn, x) → 0.

Let Xn →p X ; we need to show that Ed(fXn, fX) → 0. Suppose the contrary,
then there exists an ε > 0 and a sequence nk → ∞ such that almost surely Xnk

→ X
while Ed(fXnk

, fX) ≥ ε for all k. We got a contradiction, because Xnk
→ X implies

ϕ(Xnk
, X) → 0 and then Eϕ(Xnk

, X) → 0 by dominated convergence.
2. If xn → x then fxn →p fx and, by the first statement of the theorem,

gfxn → gfx.
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REZIUMĖ

Felerio grandinės ir atsitiktinės funkcijos
V. Kazakevičius

Įrodoma, kad kiekviena Felerio perėjimo tikimybė yra tam tikros stochastiškai tolydžios atsitikt-
inės funkcijos vienmatis skirstinys. Apibrėžiamos reguliarios atsitiktinės funkcijos ir įrodoma, kad
bet kokia stochastiškai tolydi funkcija turi reguliarią modifikaciją ir kad nepriklausomų reguliarių
stochastiškai tolydžių funkcijų kompozicija taip pat stochastiškai tolydi.

Raktiniai žodžiai: Markovo grandinės, atsitiktinės funkcijos, stochastinis tolydumas.
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