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Abstract. We propose a feature extraction algorithm, based on the Hilbert–Schmidt inde-
pendence criterion (HSIC) and the maximum dependence – minimum redundancy approach.
Experiments with classification data sets demonstrate that suggested Hilbert–Schmidt com-
ponent analysis (HSCA) algorithm in certain cases may be more efficient than other consid-
ered approaches.
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1 Introduction

In many cases the initial representation of data is inconvenient, or even prohibitive
for further analysis. For example, in image analysis, text analysis and computational
genetics, high-dimensional, massive, structural, incomplete, and noisy data sets are
common. Therefore, feature extraction, or the revelation of informative features from
raw data is one of the fundamental machine learning problems.

In this article we focus on supervised feature extraction algorithms, that use
dependence-based criteria of optimality. The article is structured as follows. In Sec-
tion 2 we briefly formulate an esimators of a Hilbert–Schmidt independence criterion
(HSIC), proposed by [5]. In Section 3 we propose a new algorithm, Hilbert–Schmidt
component analysis (HSCA). The main idea of HSCA is to find non-redundant fea-
tures which maximize HSIC with a dependent variable. Finally, in Section 4, we exper-
imentally compare our approach with several alternative feature extraction methods.
Therein we statistically analyze the accuracy of k-NN classifier, based on LDA [4],
PCA [6], HBFE [2, 10], and HSCA features.

2 Hilbert–Schmidt independence criterion

The Hilbert–Schmidt independence criterion (HSIC) is a kernel-based dependence
measure proposed and investigated in [5, 8]. Let T := (xi, yi)

m
i=1

be a supervised
training set, where xi ∈ X are inputs, yi ∈ Y – corresponding desired outputs, and
X , Y are two sets. Let k : X × X → R, and l : Y × Y → R be two positive definite
kernels [7], with corresponding Gram matrices K, and L. There are proposed two
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empirical estimators of HSIC (see [5, 8])1:

ĤSIC 0(X,Y ) := (m− 1)−2Tr(KHLH ), (1)

and

ĤSIC 1(X,Y ) :=
1

m(m− 3)

(
TrK̃L̃+

1T K̃11T L̃1

(m− 1)(m− 2)
−

2

m− 2
1T K̃L̃1

)
. (2)

The (1) is biased with an O(m−1) bias, and the (2) is an unbiased estimator of
HSIC [5, 8].

3 Hilbert–Schmidt component analysis (HSCA)

In this section we suggest an algorithm for Hilbert–Schmidt component analysis
(HSCA), which is based on the HSIC dependence measure. The choice of HSIC is
motivated by its neat theoretical properties [5, 8], and promising experimental results
achieved by various HSIC-based feature extraction algorithms [2, 3, 5, 10].

Suppose we have a supervised training set T := (xi,yi)
m
i=1

, where xi ∈ RDx are
observations, and y ∈ RDy are dependent variables. Let us denote the data matrices
X = [x1,x2, . . . ,xm], and Y = [y1,y2, . . . ,ym], and assume that the kernel for the
inputs is linear (i.e. K = XTX).

In HSCA we iteratively seek d 6 Dx linear projections, which maximize the de-
pendence with the dependent variable y and simultaneously minimize the dependence
with the already computed projections. In other words, for the t-th feature we seek
a projection vector p, which maximizes the ratio

ηt(p) =
ĤSIC (pTX,Y)

ĤSIC (pTX,PT
t X)

, (3)

where Pt = [p1, . . . ,pt−1] are projection vectors extracted in previous t − 1 steps,

and ĤSIC is an estimator of HSIC. Note that, at the first step, only ĤSIC (pTX,Y)
is maximized.

For example, plugging (1) estimator into (3), we have to maximize the following
generalized Rayleigh quotient

ηt(p) =
Tr(XTppTXHLH)

Tr(XTppTXHLfH)
=

pTXHLHXTp

pTXHLfHX
T
p
, (4)

where the kernel matrix of features Lf(i, j) = l(PT
t−1

xi,P
T
t−1

xj). The maximizer is
principal eigenvector of the generalized eigenproblem

XHLHX
T
p = λXHLfHX

T
p. (5)

The case of unbiased HSIC estimator (2) may be treated in the similar manner. Well
known kernel trick [7] allows to extend HSCA to arbitrary kernel case, however we
ommit the details due to space restrictions.

1 In (2) K̃ and L̃ are corresponding Gram matrices with zero diagonals.



✐

✐

“LMD16_Daniusis_Vaitkis” — 2016/12/7 — 14:37 — page 9 — #3
✐

✐

✐

✐

✐

✐

Hilbert–Schmidt component analysis 9

4 Computer experiments

In this section we will analyze twelve classification data sets, eleven of them are from
the UCI machine learning repository [1], and the remaining Ames data set is from
chemometrics.2

We are interested in the performance dynamics of the k-NN classifier, when the
inputs are constructed by several feature extraction algorithms: unsupervised PCA
[6], supervised LDA [4], HBFE [2, 10] and HSCA.

The measure of efficiency we will analyze therein is the accuracy of k-NN classifier,
calculated over the testing set. The following procedure was adopted when conduct-
ing experiments. Fifty random partitions of the data set into training and testing
sets of equal size was generated, and feature extraction was performed using all the
above-mentioned methods. The projection matrices of the feature extraction meth-
ods were estimated using only the training data. The features generated from the
testing set then were classified using k-NN classifier. The feature dimensionality was
selected using a training data and 3-fold cross validation. Wilcoxon’s sign rank test
[9] with the standard p-value threshold of 0.05 was applied to the samples of corre-
sponding classification accuracies. The following comparisons were made, indicating
the statistically significant cases in the table:

1. HBFE 1 with HBFE 0, and HSCA1 with HSCA0 (better one indicated in bold

text);

2. The most efficient method with the remaining ones (statistically significant cases
are reported in underlined text);

3. HSCA with HBFE (data sets where HSCA was more efficient are indicated
with •, and ◦ means that it turned out to be less efficient);

4. The most efficient HSIC-based algorithm (i.e. HBFE0, HBFE 1, HSCA0 or
HSCA1) with the remaining ones (⋄ means that HSIC-based algorithm outper-
formed other ones, and ⋆ means that PCA, LDA or unmodified inputs were
more efficient).

The results in Table 1 show that HSCA approach may allow to achieve slightly better
classification accuracy for some data sets.

5 Conclusions

Suggested HSCA (Hilbert–Schmidt component analysis) algorithm (Section 3) opti-
mizes ratio of feature relevancy, and feature redundancy estimates. Both estimates
are formulated in terms of HSIC dependence measure. Optimal features are solu-
tions of generalized eigenproblem (4). In section 4 we statistically compared HBFE
with several alternative feature extraction methods, analysing classification perfor-
mance (accuracy) as the measure of feature relevance. The results of the conducted
experiments demonstrate practical usefulness of HSCA algorithm.

2 Details about Ames data set is not available due to agreement with the provider.

Liet. matem. rink. Proc. LMS, Ser. A, 57, 2016, 7–11.
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Table 1. Classification accuracy comparison.

Dataset Full HBFE1 HBFE0 HSCA1 HSCA0 PCA LDA

1-NN classifier and linear kernel
Ames • ⋄ 0.7753 0.7589 0.7765 0.7826 0.8012 0.7786 0.7714
Australian 0.7933 0.7987 0.8045 0.8093 0.8095 0.7868 0.8114
Breastcancer 0.9558 0.9553 0.9543 0.9553 0.9595 0.9566 0.9562
Covertype ⋄ 0.6868 0.6956 0.6732 0.7086 0.7014 0.6748 0.6756
Derm 0.9906 0.9973 0.9973 0.9973 0.9971 0.9949 0.9971
German 0.6698 0.6841 0.6730 0.6833 0.6910 0.6700 0.6851
Heart 0.7618 0.7600 0.7677 0.7612 0.7627 0.7520 0.7698
Ionosphere • ⋄ 0.8421 0.8555 0.8683 0.8686 0.8773 0.8581 0.8171
Sonar 0.8146 0.7819 0.7538 0.7427 0.8046 0.8146 0.6938
Spambase • 0.8975 0.8993 0.8979 0.9116 0.9056 0.9015 0.8680
Specft 0.6770 0.6690 0.7030 0.6730 0.7020 0.6630 0.5370
Wdbc • 0.9503 0.9355 0.9455 0.9476 0.9570 0.9506 0.9528

1-NN classifier and Gaussian kernel
Australian • 0.7924 0.7900 0.7927 0.7878 0.8185 0.7807 0.8110
Breastcancer 0.9508 0.9505 0.9458 0.9472 0.9466 0.9522 0.9487
Covertype • ⋆ 0.6932 0.6480 0.6738 0.6855 0.6860 0.6777 0.7091
Derm 0.9872 0.9985 0.9989 0.9993 0.9989 0.9935 0.9984
German • ⋄ 0.6717 0.6668 0.6784 0.6956 0.6797 0.6737 0.6802
Heart 0.7638 0.7689 0.7679 0.7575 0.7669 0.7588 0.7366
Ionosphere 0.8521 0.8895 0.9128 0.9025 0.9158 0.9083 0.8927
Sonar • 0.8358 0.6955 0.7942 0.7204 0.8344 0.8387 0.8258
Spambase • ⋆ 0.8570 0.7994 0.7903 0.8119 0.8129 0.8471 0.8779
Specft 0.6778 0.7283 0.7317 0.7650 0.7400 0.6370 0.7370
Wdbc ⋆ 0.9510 0.9148 0.9425 0.9320 0.9424 0.9510 0.9599
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REZIUMĖ

Hilberto–Šmito komponenčių analizė
P. Daniušis, P. Vaitkus, L. Petkevičius

Straipsnyje pateikiamas naujas HSCA požymių išskyrimo metodas, kurio esmė yra maksimizuoti
HSIC priklausomumo mato įvertinį tarp požymių ir priklausomo kintamojo, kartu siekiant elimi-
nuoti požymių tarpusavio priklausomumą, metodas eksperimentiškai palygintas su klasikiniais bei
naujais požymių išskyrimo metodais.

Raktiniai žodžiai: požymių išskyrimas, dimensijos mažinimas, HSCA, Hilbert–Schmidt nepriklauso-
mumo kriterijus, branduolių metodai.
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