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Abstract. We develop a general algorithm for fitting the biochemical kinetics data. The
developed algorithm searches and analyzes numerous minima. This approach allows us to
analyze biochemical data without a priori quasi-steady-state assumptions. The algorithm
allows us to treat the biochemical kinetics data that has varying degree of steadiness. We
test the approach by analyzing experiment data from 4-nitrophenyl phosphate hydrolysis
with alkaline phosphatase.
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1 Introduction

Typically, in biochemical kinetics experiments, the concentration of substrates is much
higher than that of enzymes. Therefore, the quasi-steady state assumption is fre-
quently valid. This results in dimensional reduction of the number of reaction rate
parameters, and integral curves can be approximated with less reaction rate param-
eters than defined in a reaction scheme.

The advent of computers and new algorithms has opened new possibilities to
simulate and analyze data in biochemical kinetics. At first, integral curve analysis
was limited only to the cases where an analytical solution was known. Nowadays,
integral curve analysis can be applied for any reaction scheme of interest. Direct data
fitting into numerical solutions of differential equations was implemented in various
software tools a dozen of times [6, 4, 2, 1, 7]. However, this method also has pitfalls.
Widespread belief (fundamental assumption in rate constant fitting software) that
there exists one optimal set of rate constants is the most severe. This assumption
leads to wrong fitting results in cases under quasi-steady state. However, it is desirable
to describe a reaction scheme by simple chemical reactions and to have a method to
prove a quasi-steady state instead of postulating it.

In this paper, we describe a novel algorithm that is able to fit data to a reaction
scheme without assuming pre-steady or quasi-steady state. Neither we assume that
there exists one optimal set of rate constants.
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2 Mathematical model

2.1 A system of differential equations

A system of ordinary differential equations can be constructed from a reaction scheme,
which will be represented as a set of simple unidirectional chemical reactions (bidi-
rectional reactions are split into unidirectional reactions).

Suppose that that in a reaction scheme there are N different reagents and products.
We can enumerate the reagents and products as A1 . . . AN . Then all reactions in the
reaction scheme can be written in the artificial matrix form

N
∑

n=1

γi,nAn
ki−→

N
∑

n=1

γ′

i,nAn, i = 1 . . . I, (1)

where I is the number of reactions, and γi,n > 0 and γ′

i,n > 0 are stoichiometric
coefficients for reagents and reaction products. Note that if some reagent Aj does
not participate in a reaction, its respective stoichiometric coefficients γi,j and γ′

i,j are
simply zero.

We can then describe (1) as a system of N ordinary differential equations (one
equation for each individual reagent):



























∂[A1]
∂t =

∑I
i=1 τi(γ

′

i,1 − γi,1)ki
∏N

n=1[An]
γi,n ,

∂[A2]
∂t =

∑I
i=1 τi(γ

′

i,2 − γi,2)ki
∏N

n=1[An]
γi,n ,

...
∂[AN ]
∂t =

∑I
i=1 τi(γ

′

i,N − γi,N )ki
∏N

n=1[An]
γi,n .

(2)

Here τi ∈ {1,−1} indicates the direction of a reaction. If we have to split a bidirec-
tional reaction, then the direction of the backward reaction is −1. Otherwise, it is
simply 1.

2.2 Relation between the observed quantities and solutions of the ODE

system

A response function r is a linear combination of reagent concentrations at some time t.
In order to define the response function, we need to compute the concentration at

time t. We do that by integrating each equation in (2):

[

Am(t)
]

=
[

Am(0)
]

+

∫ t

0

I
∑

i=1

τi
(

γ′

i,m − γi,m
)

ki

N
∏

n=1

[An]
γi,n dt, m = 1, . . . , N. (3)

Note that [Am(0)] here is the initial concentration at time t = 0.
Once we have computed the concentrations for each reagent, we can define the re-

sponse function

rj(A, t) =

N
∑

m=1

cj,m
[

Am(t)
]

, j = 1, . . . ,K. (4)

Here cj,m, m = 1, . . . , N , are scaling constants (for example, molar absorptivities) and
j = 1, . . . ,K are the indices of independent experiments (where K is the number of

Liet. matem. rink. Proc. LMS, Ser. A, 57, 2016, 12–17.
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experiments with different initial concentrations). A linear combination is sufficient to
express the measurement in biochemical kinetics. Note that the coefficients cj,m can
act as a “comb” on the concentrations of reactants. We can filter out uninteresting
concentrations by setting an appropriate coefficient to 0. Moreover, if all cj,m = 1,
then a well-behaving system yields rj(A, t) = const.

A response function, tracked for the duration of the experiment, produces the
kinetic curve

Γj = rj(A, t), t ∈ [0, tj ]. (5)

2.2.1 Goodness of fit

Let c and c̄ be curves with M points. The similarity metric between those curves is
defined as

d(c, c̄) =

√

√

√

√

1

M

M
∑

i=1

(ci − c̄i)2, (6)

where M > 0 is the number of samples in a curve. The metric d gives an average
distance between the samples in curves c and c̄.

The goodness of fit for K experiment curves is then defined as the sum of similarity
scores for each individual experiment:

q =

K
∑

j=1

d(Γj , Γ̄j), (7)

where Γj is a simulated kinetic curve, and Γ̄j is an experiment curve. Ideal fits l have
the score q = 0.

2.2.2 Fitting algorithm

During grid search, a set of rate constants with minimal scores q is constructed.
The Powell optimizer [5] is applied on this set, which refines the rate constants even
further. Finally, the contour of likelihood region of the fit scores is estimated, and
the rate constants are filtered using the equation [3]

c =
qmin

1− I−1
1−α

(

P
2 ,

U−P
2

)

[

∑K
i=1

(

ni

ni−1

)

K

]

. (8)

Here K > 0 is the number of experiments, U =
∑K

i=1 ni is the total number of
measurements in all experiments, ni is the number of measurements during a single
ith experiment, P is the number of rate constants in a reaction scheme, α is the
significance value (the value α = 0.05 is used in the fitting of data in Section 3),
I−1 is the inverse beta regularized function, and qmin is the smallest fit score found
during the optimization.

The inverse beta regularized function is the solution to the equation I xn
xn+m

(n,m) =
1 − α for x, where I is the beta regularized function that arises from the Fisher–
Snedecor cumulative distribution [8].
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Fig. 1. (a) Kinetic curves fitted to experiment data; relationship between rate constants (b), (c)
and initial rate dependence on substrate concentration (d).

3 Results

Let us consider hydrolysis of para-nitrophenilphosphate catalysed by alkaline phos-
phatase. The following reaction scheme, which describes reaction kinetics is relevant
in our case:

E + S
k1

⇋
k
−1

ES ,

ES
kcat→ EP ,

E + P
k2

⇋
k
−2

Einh .

(9)

Here S is a substrate, P is a product, E, Einh and ES are enzyme and en-
zyme/substrate complex respectively, k1, k−1, k2, k−2, and kcat are the rate con-
stants for reactions. Without any unnecessary experiments, the reaction scheme (9)
results in an ideal fit (Fig. 1(a)) with fitted parameters k1 = 2.21 × 106 M−1 s−1,
k−1 = 3.18 × 10−7 s−1, k2 = 1 M−1 s−1, kcat = 1.54 × 102 s−1. This result is valid
under the assumption that only one optimal solution exists. This assumption is a
typical error in biochemical kinetics data fitting software. If we discard this error-
neous assumption our algorihtm can find numerous local minima (see Fig. 1(b), (c),
(d)), all of which are valid fits for this dataset, and indicate a quasi-steady state.

Other data fitting tools based on the uniqueness of optimal fit [6, 4, 2, 1, 7] give
one solution with values for all rate constants in the reaction scheme (9). Analyti-
cal derivation of initial rate equation, based on quasi-steady approximation, for the

Liet. matem. rink. Proc. LMS, Ser. A, 57, 2016, 12–17.
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reaction scheme (9) yields

v0 =
[E0]kcat [S0]

KM

(

1 + [P0]
Kinh

)

+ S
, (10)

where KM = k
−1+kcat

k1
and Kinh = k2

k
−2

. Using these relations, from the multiple

minima we calculated KM and Kinh . This result should be interpreted as impossibility

to fit real values of separate rate constants k1, k−1, k2, k−2 if an experiment is carried
out in quasi-steady state. Only values of kcat , KM , and Kinh could be recovered in
this case. Indeed, a linear relation of k2 and k−2 in logarithmic coordinates (Fig. 1(b))
is the result of quasi-equilibrium in the third reaction (9). The same applies to the
logarithmic relation for constants k1and k−1 in a bit complicated way. Here we have
two cases:

• the first, where k−1 ≫ kcat , and KM = k
−1+kcat

k1
simplifies to KM ≈

k
−1

k1
;

• the second, where kcat ≫ k−1, and KM = k
−1+kcat

k1
simplifies to KM ≈

kcat

k1
.

Indeed, such a relation is found in this case (Fig. 1(d)). The only definitely fitted
rate constant, which shows no dependence on other rate constants, is kcat . The
values of KM are calculated using the relations KM = k

−1+kcat

k1
= 66.9 ± 0.5 µM,

vmax = [E0]kcat = 156 ± 1nMs−1 mg−1, Kinh = k2

k
−2

= 72.3 ± 0.1 µM from fitted

values shown in Fig. 1.

4 Conclusions

We demonstrated that the assumption about the uniqueness of optimal solution is
not necessary. Without it, a unified pre-steady and quasi-steady biochemical kinetics
data analysis with extended statistical fit evaluation is possible. Applicability of
the proposed algorithm was demonstrated with experiment data from 4-nitrophenyl
phosphate hydrolysis with alkaline phosphatase.
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REZIUMĖ

Apibendrintas biocheminės kinetikos duomenų analizės algoritmas
kvazi-stacionarių būsenų aptikimui
J.V. Daugmaudis, A. Laurynėnas, J. Kulys, F. Ivanauskas

Šiame darbe pasiūlėme ir realizavome metodą, aptinkantį biocheminių reakcijų kvazi-stacionarias
būsenas. Aprašomas algoritmas buvo pritaikytas analizuojant 4-nitrofenilfosfato hidrolizę su šarmine
fosfataze. Atsisakius prielaidos, jog tėra tik vienas greičio konstantų rinkinys, kuris optimaliai su-
gludintų cheminės kinetikos kreives su eksperimentinių duomenų kreivėmis, galime sudaryti ir ištirti
reakcijos greičio konstantų rinkinius. Analizuodami tų greičio konstantų tarpusavio priklausomybes,
galime nustatyti ar reakcija yra kvazi-stacionarioje būsenoje.

Raktiniai žodžiai: biocheminė kinetika, reakcijų greičio konstantos, diferencialinės lygtys, kreivių
gludinimas, fosfatazė, 4-nitrofenilfosfatas.
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