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Nonlinear thermal conductivity in gases

Arvydas Juozapas Janavi¢ius!, Sigita Turskiené?

! Faculty of Technology, Physical and Biomedical Sciences, Siauliai University
Vilniaus str. 141, LT-76353 Siauliai, Lithuania

2 Faculty of Technology, Physical and Biomedical Sciences, Siauliai University
P. Visinskio str. 19, LT-77156 Siauliai, Lithuania

E-mail: AYanavy@gmail.com, turskienes@gmail.com

Abstract. The nonlinear diffusion equation corresponds to the diffusion processes which
can occur with a finite velocity. A.J. Janavi¢ius proposed nonlinear equation which des-
cribes more exactly the diffusion of impurities in Si crystals in many interesting practical
applications. The heat transfer in gases is also based on diffusion of gas molecules from
hot regions to the coldest ones with a finite velocity by random Brownian motions. In this
case the heat transfer can be considered using similar nonlinear thermal diffusivity equation.
The approximate analytical solution of this nonlinear equation can be used for the experi-
mental analysis of thermal conductivity coefficients using temperature profiles dependence
on different temperatures and pressures in gases.

Keywords: nonlinear thermal diffusivity equation, approximate analytical solution, temperature

profiles.

Introduction

We discussed the thermodiffusion in semiconductors [5] excited by ultraviolet or
X-rays [2] and metals heated by lasers [8]. The mathematical methods derived in
papers [5, 2, 8, 4] for the formulation and solution of the nonlinear heat transfer
equations in gases have been used. These results can be important for engineering
applications. We assume that the process of heat spreading is similar to other diffu-
sion processes, and in the nonlinear case, can be described by nonlinear flow density
[4]. In this case the frequency of the jumps [7] depends upon the molecule coordinates,
concentration and temperature.

The coefficient of thermal conductivity of gases can be expressed in the following

way [9]
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Here X is mean values of a free path, ¥ — mean velocities of molecular movement, n —
number of molecules per unit volume, k — Boltzmann constant, T" — temperature of
gases, (4 — molar mass, R - gas constant, d — diameter of a molecule.

The equation of thermal conductivity of gases [9] for one-dimensional case
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can be obtained from the heat flow continuity equation [9]

aT
ot
where p = nkT, c, is the specific heat capacity of gases at constant pressure p, p is

density of gases, D,,, — coefficient of thermal diffusion.
The equation (2) can be rewritten in more a convenient form
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The nonlinear heat conduction equation [10] can be rewritten by introducing nonlinear
equation
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for energy density E.

The complicated approximate analytical solution [10] E(z,t) of the equation (5)
cannot be experimentally measured. In our case (4) temperatures T'(z,t) can be
measured directly and compared to the theoretical calculations.

1 Nonlinear heat diffusion equation in one-dimensional case

The solution of (4) can be obtained by introducing similarity variable [4] £ and func-

tion f (&)
€= T=T.f(€), 0<E<E&, 0<x< a0, 20 ==E/ (DmoTet)

(6)
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which depends on environment temperature T, and constant D,,q.
By substituting (6) into (4) we obtain nonlinear differential equation

o (.0f\ .0f
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The solution of this nonlinear equation can be expanded by power series including
boundary condition at & = &g

FO=Y an€=&)"  fE)=) anz", 2=(—&, “<2<0. (8)
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The equation (7) can be applied to f(z) for the modified variable z

o(.0f\ of _of
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By requiring that solution f(z) (8) of nonlinear equation (9) can be expressed by
power series, we obtain recurrences relations [3] between coefficients a,,

n+1
2(n+1) Z (n+2—=m)ant2—mam +na, + (n+1)&an41 =0, n=0,1,2,... (10)

m=0
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Table 1. Dependence of parameters aj, az, o for the approximate solution
f(2) (16) on relative temperature differences 2L at heat sources.

Te
ATZ ay az &o
0.05 —0.446843 —0.087049 0.114448
0.1 —0.481917 —0.090069 0.216244
0.2 —0.544857 —0.094755 0.394076

2 The approximate analytical solution

We restrict the approximation (8) by polynomials. From the formula (10) at n =0, 1,2
we obtain the following system of equations:

dasag + 2a12 +&a1 =0, ag=1, (11)
12azag + 12a1as + a1 + 2£pas = 0, (12)
24a4a0 + 24aza; + 12a3 + 2as + 3¢paz =0, a4 =0, (13)
where in (13) was used approximation ay = 0 and ap = 1 for boundary condition
f(0)=1.
The solution f(z) (8) must satisfy equation (9) and boundary conditions

T(z) =Tef(0) =T, ao=1 (14)

at maximum penetration point of heat when T'(§ = &) = T.. The approximate
expression of temperature T at heat source is

n+1 AT
T =T,f(—&) = Ts, > (=DM am&™ = 7 AT=T,-T. (15)
m=1 €

By using the approximate solution
f(2) =ap+ a1z +axz?, ag =1, (16)

we obtain the following system of equations

dasag + 2a12 +&a1 =0, ag=1, (17)
12(13(10 + 12(11(12 +a; + 2500,2 == 0, (18)
T. T. T, -T. AT
2 s s s e
_ — 5 _ = 1= = . 1
a2§y — a18o T, % T, T, T (19)
Taking in the care that values of L are sufficiently small, we can find from (17), (18),

(19) the following approximate solutlons (9) with constants presented in Table 1.

In Table 1 the approximate solution (8) of the equation (9) for temperature dif-
ferences ATy = Ty — T, = 0.05T,, ATy = 0.1T, and AT3 = 0.27, are presented for
source temperature 75 and environmental temperature 7.

The constants a1, as practically do not change significantly at different 4L what
means that approximate solution is sufficiently exact for practical calculatlons of
temperatures. The constant &y defining the maximum heat penetration depth xg

20 = &0/ (DimoTot). (20)
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Table 2. Dependence of parameters aj,az,as,&o for the approximate

solution F(z) of (8) on relative temperature difference at heat source%.
ATZ ai az as &o

0.05 —0.478967 —0.101916 —0.007086 0.106800
0.1 —0.509157 —0.103549 —0.006758 0.204821
0.2 —0.565578 —0.106188 —0.006198 0.380151
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Fig. 1. Profiles f; and F; for approximate solutions (f(z) — 1) and (F(z) — 1).

which is directly proportional to square root from temperature of environment. The
obtained solution of the equation (9) presented in Table 1 and experimental heat
penetration depths can be used for defining the heat thermal diffusion coefficients
DyoT. [m?s~'. In this way the dependence of D,,o on temperature at constant
pressure p (2) can be obtained.

We can find a more exact solution by the system of equations (11), (12) and (13),
when a4 = 0 and the boundary condition (15) is as follows

AT

—azéo® + a6’ — ar1éo = T AT =T, - Te. (21)

The results for more exact solutions F'(z) are presented in Table 2. For graphically
representation in Fig. 1 we introduced the new functions f; and F; instead (f — 1)
and (F' —1). We obtained that profiles f; and F; for obtained approximate solutions
f(2) and F(z) presented in Table 1 and Table 2 practically coincide, when at heat
source we used (f — 1)~ (F —1)=(Ts —T.)/T. = 0.2.

3 Results and conclusions

A similar task and approach was considered for nonlinear diffusion [4, 1, 6] in gases.
In this case the definition of diffusion coefficients, which can be used at average val-
ues of frequencies of molecule jumps in the frontier region of diffusion profiles, was
improved. For practical calculation of temperature profiles, the coefficients a1, as, as
at AT /T, = 0.1 sufficient exact (21) and average values of U for approximate Dy
(2), the evaluation can be used. For definition of D,,o values dependencies on tem-
peratures and pressures, the values 1, as,as presented in Table 2 at AT/T. = 0.05
can be used. The results presented in Table 1 and Table 2 show that heat penetration
depths (19) are approximately proportional to AT /T, values.
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REZIUME

Netiesinis Silumos laidumas dujose
A. J. Janavicius, S. Turskiené

Panasus netiesinés priemaisy difuzijos kietuose kunuose uzdavinys ankséiau isnagrinétas jvedus di-
fuzijos koeficienta proporcinga difunduojanéiy priemasy koncentracijai. Tai patikslina difuzijos pro-
ceso modelj ir teorinius priemaisy pasiskirstymo profilius gaunant baigtinj difuzijos greitj. Siame
darbe gautas termodifuzijos koeficientas proporcingas absoliutinei temperaturai, naudojant klasi-
king Silumos laidumo teorija dujose. Taip pat gaunamas baigtinis Silumos sklidimo greitis (20).
Gauti apytiksliai netiesinés termodifuzijos lygties (4) sprendiniai leidZia nustatyti termodifuzijos ko-
eficientus, nagrinéjant eksperimentinius temperatiury profilius intervale (6) ir juy priklausomybe nuo
temperaturos ir slégio.

Raktiniai Zodziai: netiesiné termodifuzijos lygtis, apytikslis analizinis sprendinys, temperaturos pro-
filis.
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