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Abstract. A model of a population dynamics is solved numerically taking into account
a discrete set of offsprings and the nonlinear (directed) diffusion. The model consists of a sys-
tem of integro-partial differential equations subject to conditions of integral type. A spread
of initially lokalized population is studied. Some numerical results are discussed.
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1 Introduction

Mammals and birds feed, warm, defend their youngs from enemies, and learn them
to find a food and hide from enemies. If one of those duties is non realized young off-
springs die. In recent years (see [3, 4, 2]) three models were proposed for populations
taking care of their young offsprings. Two of them describe dynamics of two-sex pop-
ulation forming temporal and permanent pairs. In the third one a one-sex population
dynamics model is studied taking into account the random spatial diffusion.

In the present paper we consider a one-sex age-structured population deterministic
model taking into account a discrete set of offsprings, their care, and nonlinear spatial
diffusion of individuals.

In case of linear diffusion initially localised population instantaneously spreads
into all habitat. Nonlinear diffusion conditiones spread of population into a bounded
domain. Goal of the paper is the numerical study of the population spread onto
1-dimensional habitat. Based on the paper [1] we proposed and approved a numerical
algorithm.

We assume that all individuals have prereproductive, reproductive, and post-
reproductive age intervals. The individuals of reproductive age are divided into groups
of singles and those who take care of their young offsprings. All individuals of pre-
reproductive age are divided into young (under maternal care) and juvenile classes.
Juveniles can live without maternal care but cannot produce offsprings. The model
consists of integro-partial differential equations. Number of these equations depends
on a biologically possible maximal newborns number of the same generation produced
by an individual.

The paper is organised as follows. In Section 3 we introduce the model, in Section 4
we discuss numerical results. Concluding remarks are given in Section 5.
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2 Notation

R
m: the Euclidean space of dimension m with x = (x1, . . . , xm);

κ: the diffusion modulus;

(0, T ) and (T1, T3) (T < T1 < T3): the child care and reproductive age intervals,
respectively;

u(t, τ1, x): the age-space-density of individuals aged τ1 at time t at the position
x who are of juvenile (τ1 ∈ (T, T1)), single (τ1 ∈ (T1, T3)), or post-reproductive
(τ1 > T3) age;

uk(t, τ1, τ2, x): the age-space-density of individuals aged τ1 at time t at the
position x who take care of their k offsprings aged τ2 at the same time;

ν(t, τ1, x): the natural death rate of individuals aged τ1 at time t at the position
x who are of juvenile or adult age;

νk(t, τ1, τ2, x): the natural death rate of individuals aged τ1 at time t at the
position x who take care of their k offsprings aged τ2;

νks(t, τ1, τ2, x): the natural death rate of k–s young offsprings aged τ2 at time t
at the position x whose mother is aged τ1 at the same time;

ν̃k = νk +
∑k−1

s=0 νks;

αk(t, τ1, x)dt: the probability to produce k offsprings in the time interval [t, t+dt]
at the location x for an individual aged τ1;

N(t, x): sum of spatial densities of juvenile and adult individuals;

u0(τ1, x), uk0(τ1, τ2, x): the initial age distributions;

[u|τ1=τ ]: the jump discontinuity of u at the point τ1 = τ ;

α =
∑n

k=1 αk, γ1(τ1) = max(0, τ1 − T3), γ2(τ1) = min(τ1 − T1, T );

T2 = T1+T : the minimal age of an individual finishing care of offsprings of the
first generation;

T4 = T3+T : the maximal age of an individual finishing care of offsprings of the
last generation;

σ1 = (T1, T3), σ2 = (T1, T4), σ3 = (T2, T4);

σ1∗ = (T,∞) \ σ1, σ2∗ = (T,∞) \ σ2, σ3∗ = (T,∞) \ σ3;

Q = {(τ1, τ2) : τ1 ∈ (T1 + τ2, T3 + τ2), τ2 ∈ (0, T )}.

3 The anticrowding population model

In this section, we give the population dynamics model in Ω with both the ex-
tremely inhospitable and impermeable boundary ∂Ω which can be described by the
system.

Here ∂t and ∂τk denote partial derivatives, ∂η is the operator of the outward
normal derivative on the ∂Ω, div (uk∇N) = ∇u∇N + u∆N, while n is the biologi-
cally possible maximal number of newborns of the same generation produced by an
individual.

Liet. matem. rink. Proc. LMS, Ser. A, 56, 2015, 84–89.
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∂tu+ ∂τ1u = −νu+ κ div(u∇N)−

{
0, τ1 ∈ σ1∗,

αu, τ1 ∈ σ1

+





0, τ1 ∈ σ2∗,∫ γ2(τ1)

γ1(τ1)

n∑

k=1

νk0ukdτ2, τ1 ∈ σ2

+






0, τ1 ∈ σ3∗,
n∑

k=1

uk

∣∣
τ2=T

, τ1 ∈ σ3,
t > 0, x ∈ Ω,

u|τ1=T =

∫

σ3

n∑

k=1

kuk|τ2=T dτ1,

u|t=0 = u0, [u|τ1=τ ] = 0, τ = T1, T2, T3, T4, u|∂Ω = 0 or ∂ηu|∂Ω = 0,

(1)





∂tuk + ∂τ1uk + ∂τ2uk + (ν̃k)uk − κdiv (uk∇N)

=






0, k = n,
n∑

s=k+1

νskus, 1 6 k 6 n− 1, (τ1, τ2) ∈ Q, t > 0, x ∈ Ω,

uk|τ2=0 = αku, uk|t=0 = uk0, uk|∂Ω = 0 or ∂ηuk|∂Ω = 0,

(2)

N =

∫
∞

T

u dτ1 +

∫ T

0

dτ2

∫ T3+τ2

T1+τ2

n∑

k=1

uk dτ1. (3)

The first term on the right-hand side in Eq. (1) describes the fraction of individuals
who produce offsprings, the second and third terms describe the fraction of individuals
whose all young offsprings die and who finish child care, respectively. The transition
term

∑k−1
s=0 νksuk on the left-hand side in Eq. (2) describes the fraction of individuals

aged τ1 at time t who take care of k young offsprings and whose at least one young
offspring dies. Similarly, the term on the right-hand side in this equation describes a
fraction of individuals aged τ1 at time t who take care of more than k, 1 6 k 6 n− 1,
young offsprings aged τ2 whose number after the death of offsprings becomes equal
to k. The condition [u|τ1=τ ] = 0, τ = T1, T2, T3, T4, means that function u must be
continuous at the point, τ1 = τ , of the discontinuity of the right-hand side of Eq. (1).

The integral term in the right-hand side of Eq. (1)1 can be written as follows:

γ2(τ1)∫

γ1(τ1)

n∑

k=1

νk0ukdτ2 =





∫ τ2−T1

0

n∑

k=1

νk0uk dτ2, τ1 ∈ (T1, T2),

∫ T

0

n∑

k=1

νk0ukdτ2, τ1 ∈ (T2, T3),

∫ T

τ2−T3

n∑

k=1

νk0ukdτ2, τ1 ∈ (T3, T4).

The constant κ is the diffusion modulus. Given functions ν, νk, νks,αk, u0, and
uk0 and the unknown ones u and uk are to be positive. The positive constants T and
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Ts are also to be given. We also assume that ν, νk, αk, and νsk do not depend on t
and x and use the following compatibility conditions:






u0|τ1=T =

∫

σ3

n∑

k=1

kuk0|τ2=T dτ1, u0|x=0;1 = 0,

[u0|τ1=τ ] = 0, τ = T1, T2, T3, T4,

uk0|τ2=0 = (αk)|t=0u0, uk0|∂Ω = 0.

(4)

4 Initial and vital functions. Numerical results

In this section using computer simulations, we study model (1)–(4) in R
1. The

conditions z|∂Ω = 0 and ∂ηz = 0 now reduces to z|x=0; 1 = 0, ∂ηz|x=0; 1 = 0 where z =
u, uk. The model was written on the characteristics lines and then solved numerically.
For units of age and lenght we use T and L.

We assume that integer n is equal to 3. This coresponds to species e.g., Fe-
lis yagouarundi (2–3 children), Pseudocheirus peregrinus (1–3 children), Tremarctos
ornatus (1–3 children), and Artictis binturong (1–3 children).

4.1 Initial and vital functions

In all calculations we use the vital rates






ν(τ1) = µ1τ
q
1 + µ2, q > 1,

νk(τ1, τ2) = µk1τ
qk
1 + µk2, qk > 1,

νks(τ1, τ2) = µks1|τ2 − τ0|
q + µks2, τ0 < T,

αk(τ1) = αk1 exp
{
−
(
τ1 − (T3 + T1)/2

)q0
/αk2

}
, q0 > 1,

(5)

and initial functions

{
u0(τ1, x) = F0(x)β3(τ1 + β2) exp{−β1τ1},

uk0(τ1, τ2, x) = αk(τ1 − τ2)u0(τ1 − τ2, x)Ũk(τ2)
(6)

which are also used in [2]. Here Ũk(τ2) = 1 + τ2
T (Ũk(T )− 1).

Using compatibility conditions (4)1, we determine function

β2(x) = Ũk(T )

∫ T3

T1

3∑

k=1

kαk(τ1)(τ1 − T ) exp{−β1τ1}dτ1

×

{
exp{−β1T } − Ũk(T )

∫ T3

T1

3∑

k=1

kαk(τ1) exp{−β1τ1}dτ1

}
−1

− T. (7)

The positive constants µ1, µ2, µk1, µk2, µks1, µks2, q > 1, qk > 1, β1, β3, Ũk(T ),
ξ2 > 1, ξ3 > 1, T < T1 < T3, αk1, αk2, τ0 < T , and ρ0 remain free.

Liet. matem. rink. Proc. LMS, Ser. A, 56, 2015, 84–89.
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Fig. 1. Comparison of N(t, x) determined
by the Dirichlet problem for

κ = 0.0001(1); 0.005(2); 0.001(3).

Fig. 2. Behavior of N(t, x) determined by
the Dirichlet problem for F0 = F2.

4.2 Numerical results

Results of numerical calculations are displayed in Figs. 1–3 for the following constants
and initial functions:

β1 = 0.55, β2 = 5.7, κ = 0.01; T = 1, T1 = 2, T2 = 3, T3 = 4, T4 = 5,

α11 = 0.7, α21 = 0.75, α31 = 0.7, α12 = α22 = α32 = 4,

µ1 = µ2 = 0.01, µ11 = µ12 = µ21 = µ22 = µ31 = µ32 = 0.001,

µ321 = µ322 = µ211 = µ212 = µ101 = µ102 = 0.0012,

µ311 = µ312 = µ201 = µ202 = 0.001, µ301 = µ302 = 0.0008,

Ũ1 = 0.7, Ũ2 = 0.6, Ũ3 = 0.5, τ0 = 0.2, ξ3 = 1.5,

q0 = 1.5, q1 = 2, q2 = 2, q = 2,

F0 = F1 =






0, x ∈ [0, 0.375],

(16(x− 0.375)(x− 0.625)3/2, x ∈ [0.375, 0.625),

0, x ∈ [0.625, 1],

F0 = F2 =

{
(16x(0.5− x))3/2, x ∈ [0, 0.5],

0, x ∈ [0.5, 1],

Function N(t, x) determined by the solution to the Dirichlet problem is exhibited
in Figs. 1 and 2. In Fig. 3 the comparison of N for Dirichlet and Neumann problems
is given. All figures demonstrate a spread of N(t, x) over all interval [0, 1] of initially
localized functions.

Fig. 1 demonstrates the influence of diffusivity κ while Fig. 2 illustrates N(t, x)
detemined by the solution of the Dirichlet problem for initial function F2. In Fig. 3
we compare the N(t, x) determined by the solution to the Dirichlet and Neumann
problems for the initial function F1.
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Fig. 3. Comparison of N(t, x) for the Dirichlet (1) and Neumann (2) problems in the case
F0 = F1.

5 Concluding remarks

A one sex-age-structured population dynamics model is presented for Dirichlet and
Neuman problems and solved numerically taking into acount a discrete set of off-
springs, strong maternal care, and nonlinear spatial difusion. Acording to strong
maternal care all offspring die if their mother dies. Because of the diffusion fluxes,
u∇N and uk∇N , the model is nonlinear and describes an anticrowding population
dynamics. A spread of initially localized population over all interval is studied.

Our numerous simulations demonstrate a fast convergence of numerical algorithm
used for calculations but it’s mathematical justification is an open problem.
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REZIUMĖ

Apie nesusispiečiančios populiacijos dinamiką atsižvelgiant į diskrečią palikuonių
aibę
Š. Repšys, V. Skakauskas

Darbe pristatomas populiacijos dinamikos modelis, kuriame tariama, kad palikuonių aibė diskreti,
o difuzija (migracija) – netiesinė. Modelis sudarytas iš integro-diferencialinių lygčių. Modelis
išsprendžiamas skaitiniais metodais, pateikiama ir aptariama keletas rezultatų.

Raktiniai žodžiai: populiacijos dinamika, netiesinė difuzija, diskrečioji palikuonių aibė, nesusispiečianti
populiacija.
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