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Abstract. Let Z(t) = Z;V:(? Xj,t >0, be a stochastic process, where X; are independent
identically distributed random variables, and N(t) is non-negative integer-valued process
with independent increments. Throughout, we assume that N(¢) and X; are independent.
The paper considers normal approximation to the distribution of properly centered and
normed random variable Zs = f0°° e ot dZ(t), 6 > 0, taking into consideration large devia-
tions both in the Cramér zone and the power Linnik zones. Also, we obtain a nonuniform
estimate in the Berry-Essen inequality.
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Introduction

Let {X,X;, j =1,2,...} be a family of independent identically distributed (i.i.d.)
random variables (r.v.s.) with the mean, variance and distribution function

w=EX, 0 =DX < o0, Fx(z)=P(X <z), zeR,

where R is the set of real numbers. In addition, assume that N(¢) is non-negative,
integer-valued process, with independent increments: forany¢;, j =0,1,...,n,n > 1,
such that 0 =ty < t; < --- < t,, < 00, the increments N(t1) — N(to),...,N(t,) —
N(t,—1), are independent. The mean, variance and distribution of N(¢) are denoted
by

a(t) = EN(t)7 BQ(t) = DN(t)a P(N(t) =m) =qm, 0<gm<1, meNy, (1)
where Ng = {0,1,2,...}. By

N(t)
Z(t)=>Y X;, t=0, (2)
j=1

we denote a stochastic process, where X is independent of N (¢). For instance, in the
continuous dynamic models of an insurance stock [6, p. 152], R(¢t) = R(0)+P(t)—Z(t),
t > 0, can express the surplus R(t) at time t. Here R(0) is the initial reserve and
P(t) is the total premium received up to time ¢. That is, the company sells insurance
policies and receives a premium according to P(t). The sum (2) is the total claim
amount process in the time interval [0,¢]. In this example, X;, j = 1,2,..., denotes
the jth claim, and N(¢) is the number of claims by time ¢.
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In this paper, we consider random variable (r.v.)

Zs = /OOO e %tdz(t), (3)

where § > 0. For instance, (3) represents the sum of the discounted payments, where
is a rate of interest (see, e.g. [2, 8]).
Since N(t) is independent of X, j = 1,2, ..., the mean and variance of (2) are

EZ(t) = pa(t),  DZ(t) = o’a(t) + p?B2(t). (4)

Now we wish to find the mean and variance of the r.v. (3). At first, assume that
a(t), t > 0, is a step function a(t) = a;, t € A, for sum intervals A; = [s,¢],
t > s. In our case, a(t) = e7%, § > 0. We denote the integral sum for the integral
Z = ftozoo a(t) dZ(t) by

Z7* =3 aZ(A), (5)
l

where Z(4;) = Z(t) — Z(s). By (4), and since Z(t) increments are independent, we
have

EZ* =Y aBZ(A)=p)_ aa(d), (6)
1 1
DZ* = afDZ(A) =0 afa(A) + 4 aff2(A), (7)
1 1 1
where a(4;) = a(t) — a(s), B2(4;) = B2(t) — B?(s) > 0. Let us denote,

NM:/ e Ot dN (1), NM:/ e 2L AN(t). (8)
0 0

The use of the integral sums >, a;N(4;), >, a?N(4;) for the integrals (8), and (6)
and (7), gives

EZs; = pors,  DZs=EZj — (EZs)* = 0’ + 1167 ., 9)
where aq ., ag 4, and ﬁi* are means and the variance of r.v.s. (8):
ar« =ENis5,  as.=ENys, B, =EN];—(ENy;,)> (10)

Let Py
.= 6 — §

° T T ADZ;

be the normalized r.v. of the r.v. (3). In this paper, we are interested in the nor-
mal approximation for the distribution of (11) that takes into consideration large
deviations both in the Cramér and the power Linnik zones in the case where cumulant
method (see [9]) developed by Rudzkis, Saulis, Statulevicius (1978) (for the reference
see in [9]) is used. In addition, we obtained nonuniform estimate in the Berry—Essen
inequality. Observe, that in the paper we consider only the case where p # 0.

It should be noted that method of cumulants provided a way to obtain large
deviation theorems for sums of independent and dependent r.v.s., polynomials forms,

DZs > 0. (11)
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multiple stochastic integrals of random processes, and polynomial statistics in both
the Cramér and the power Linnik zones. The monograph [9] addresses these issues.

Large deviation theorems in both the Cramér and the power Linnik zones, expo-
nential inequalities, nonuniform estimates of the Berry—Essen inequality for a normal-
ized compound Poisson process (the normalized sum (11), in case N(¢) is a homoge-
neous Poisson process) have been proved in [8]. Discounted version of the Berry—Essen
theorem for the case of i.i.d. r.v.s. have been proved in [3]. Recently, Miao et al. [5]
extended results of the paper from the i.i.d. r.v.s. case to the autoregressive process.

Since in this paper we are interested not only in the convergence to the normal dis-
tribution but also in a more accurate asymptotic analysis of the distribution function
F3 (), we must first find the suitable bound for the kth-order cumulants of (11). In
order to obtain upper bounds for I';(Zs), we impose condition (Bv) for the kth-order
moments of X. Consequently, we say that the r.v. X with 0 < 02 < oo satisfies
condition (B.,) if there exist constants v > 0 and K > 0 such that

E(X — )" < (R)'"TKF 260, k=3,4,.... (B,)

Condition (B,) is a generalization of Bernstein’s familiar condition. Condition (B.)
ensures the existence of all order moments of the r.v. X. Using Lemma 3.1 in [9,
p. 42], we take up the position that

Proposition 1. If the r.v. X satisfies condition (B.), then
|1 (X)] < (BT M 202, M =2max{o, K}, k=2,3,.... (12)

Along with the condition (B,), we impose condition for the kth-order cumulants
of the process N(t). Consequently, we assume that N (¢) satisfies condition (L): there
exist constant K7 > 0 such that

|Tu(Ny)| < (1/2)RIKF28%(), k=2,3,.... (L)
Define the abbreviation (a V b) = max{a, b}, a,b € R.

Lemma 1. Suppose, the r.v. X with u # 0 and 0 < 0% < oo fulfills condition (B.)
and that N(t) satisfies condition (L). Then, for k =3,4,...,

[T (Zs)] < (R /(34572), A, =/DZs/(2(Ki|ul v (1Va/(2]ul)M)). (13)

Since the accurate upper bounds (13) for the kth-order cumulants of the norma-
lized sum Zy have been derived, to prove theorems of large deviations we have to
use general lemma (see Lemma 2.3, Rudzkis, Saulis, Satulevi¢ius, 1978 in [9, p. 18]),
about large deviations for an arbitrary r.v. with zero mean and unit variance.

Let

Ay = ey A e = (1/6)(V2/ (6 20) ),

WV

0.
In addition, by ®(v/2x) we denote normal distribution function with zero mean and
variance of 1/2. Furthermore, we will use 6 (with or without an index) to denote a

value, not always the same, that does not exceed 1 in modulus.
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Theorem 1. Suppose the r.v. X with 0 < 0? < oo fulfills condition (B.) and that
N(t) satisfies condition (L). Then in the interval 0 < x < A, the ratios of large
deviations

(1—Fy (2))/(1 - o(V2z)) = exp {Ly(2)} (1 + 01 f(2)(x + 1)/ A,),
Fy (—2)/®(—V2z) = exp {L,(~2) } (1 + 2 (z)(z + 1)/ A,)

are valid, where
flx) = (60(1+24% exp{ — (1 —2/A,)\/A,})) /(1 — z/A,),
241, >0,
Z)\kz +93<A), T{OO v 1:0

3<k<r ’
The coefficients Ay, (expressed by cumulants of Zs defined by (11)) coincide with the

coefficients of the Cramér—Petrov series [7) given by the formula A, = —by_1 /k, where
the by are determined successively from the equations

J r s
DLANCAID DI O (S

. . P . )
r=1 Jitetge=y4,7i21 i=1

In addition,

Theorem 2. Under the conditions of Theorem 1, the ratios
(1-Fz(2)/(1-0(V2x)) =1,  Fz(—z)/P(—V2z) - 1
hold for x > 0, x = o( A (7)), when A, — co. Here v(y) = (1+2(1Vv~y))~L.
Now let us assume, that where exist s moments of X and N(t).

Theorem 3. Let X with 0 < 02 < oo, satisfies condition (B.), for k=34,... s,
and N (t) satisfies condition (L), for k =2,3,...,s. Then for allx > 0 and m < s,
m=>=1,

c(m,y) In™2(A,/V/2)
— o) < 1+ sz:clm AT’

where c(m, ) = 21/ G042 (14:27)7m/2(252(6 /+/2) Y/ 1+2V) ¢(m)v12-47(v/2/6) 2/ (1+27).
m!), e(m) = 2m/2(5+2m/2\/e/n((m +1)/2)).

|Fz,(x)
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1 Proofs of Lemma 1 and Theorems 1, 2, 3

Proof of Lemma 1. Since ii.d. r.v.s. X;, j > 1, and N(t) are independent, the use
of (11) in [4, p.258], gives the characteristic function of (2),

fZ(t) (u) = EeiuZ(t) = fN(t) ( In fx (u)/z), u € R.

Thus, due to Lemma 5.6 in [7, p. 170], the k-th order cumulants

dk
— Z af Iy (Z(4)) = Z afm In f(ay) (In fx (w)/i)],_,
1

k m;
s S T ()" e

of (5) exist if the kth-order cumulants of X and N(f) exist. Here summation ) is
taken over all non-negative integer solutions (myq, ..., my) of the equation mq +-- -+
kmp =k, mi+---+mp =m, where 0 <mq,...,mip < k,and 1 <m < k.

Consequently, separating the summand of the sum Zi in case where m; = --- =
mg—1 = 0, mp = 1, and because of condition (L) together with the inequality (12),
and inequalities (22)—(24) in [4, p. 261], we have that the inequality

[k (Z7)]

<k!za§“<F1 Al)‘Fk /’f'+22m' ..... ﬁik lkl_[l(jl‘ﬂ ) )
l
< (KDY <2 <K1|u| Vv (1 Vv ﬁ)M))k : ;af(a(Al)UQ + B%(A)p?)

is valid for k = 3,4,.... Here Y, is taken over all the non-negative integer solutions
(ma,... ,mk_l) of the equation my 4+ -+ (k — D)mg—1 =k, m1 + -+ + mp_1 =,
where 0 < myq,...,mp—1 < k, 2 < m < k. Consequently,

|14(Zs)| < () 1DZs (2(Kalul v (1V o/ @) M), k=3,4,....  (14)

To complete the proof of Lemma 1, it is sufficient to use (14), and then by noting
that I'v(Zs) = (2DZs) " */2Iw(Zs), k = 2,3,..., we arrive at (13). O

Proof of Theorem 1. Clearly, Zs satisfies Statulevi¢ius’ condition (see condition (S.,),
e.g. in [9, p. 16]) with the parameter, A := A,. Accordingly, Lemma 2.3 in [9, p. 18]
yields the assertion of Theorem 1. 0O

Proof of Theorem 2. Theorem 2 follows directly from Corrolary 3.1in [9, p. 44]. O

Proof of Theorem 8. The proof of Theorem 3 is obtained by applying Achmedov’s [1]
lemma to the r.v. Z5 V2Zs. O
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REZIUME

Didziyjy nuokrypiy diskontavimo versija
A. Kasparaviciuté, D. Deltuviené

Tarkime Z(t) = Z;v:(? Xj, t > 0, yra stochastinis procesas, ¢ia X; yra nepriklausomi, vienodai
pasiskirste atsitiktiniai dydziai, o N(t) yra sveikas, neneigiamas reikSmes jgyjantis, nepriklausomuy
poky¢iy procesas. Laikoma, kad N(t) ir X; yra nepriklausomi. Siame darbe yra nagrinéjama cen-
truoto ir normuoto atsitiktinio dydzio Z5 = fooo e~ 9tdZ(t), § > 0, pasiskirstymo funkcijos aproksi-
macija normaliuoju désniu, didziyjuy nuokrypiy tiek Kramerio, tiek laipsninése Liniko zonose. Taip
pat, gautas netolygusis jvertis.

Raktiniai Zodziai: kumulianty metodas, didieji nuokrypiai, netolygusis jvertis, diskontuoty isSmoky
suma.
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