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Abstract. This paper presents some new results on a spectrum for the Sturm-Liouville
problem with one integral type nonlocal boundary condition depending on tree parameters
(v,€1,&2). Some new results on distribution of the sets of special points (poles, zeros and
constant eigenvalue points) are presented.
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Introduction

Boundary problems with nonlocal conditions are an area of the fast developing dif-
ferential equations theory. Nonlocal boundary conditions (NBC’s) arise when it is
impossible to determine the boundary values of unknown function or/and its deriva-
tives. There is an extensive interest of scientists in the eigenstructure of such type
NBC’s [1, 2].

In this paper we present some new results on a spectrum for the differential Sturm-
Liouville problem with one integral type nonlocal boundary condition depending on
tree unknowns. Many results of these investigations are presented as graphs of char-
acteristic functions.

1 Problem formulation

Let us analyze the Sturm—Liouville problem with one classical boundary condition
—u" = \u, u(0) =0, te(0,1), (1)

and another integral type NBC:

&2
u(l) = 'y/ u(t) dt (2)
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with parameters v € R, &€ = (£1,£2), 0< & <& < land A € Cy :=C. If y = 0, then
we have the classical case and all eigenvalues have the following form \, = (k7)?,
vg(t) = sin(knt), k € N, where N := {1,2,3,...}. The same problem we get in the
limit case & = &. In this paper we use notation 7N := {rk: k € N}, N, — for odd,
N, — even, and Q — rational numbers, notation ged(n; m) for greatest common divisor
of the integers n and m.

If A = 0, then all the functions u(t) = Ct satisfy the Eq. (1). Substituting this
solution into NBC (2) we derive the existence of a nontrivial solution (C' # 0). In
consequence, eigenvalue A = 0 exists if and only if v = 2/(¢3 — £7).

In the general case, for A\ # 0, eigenfunction u(t) := C'sin(qt) satisfies Eq. (1)
with A = ¢2, ¢ =z +1y € C; \ {0}, where C, :={g€ C: 2 =0,y > 0 or = > 0}, then
amap A = ¢? is a bijection between C, and C,. If ¢ is the root of the equation

&2
(1) :7/ w(t) dt, 3)

then there exists a nontrivial solution of the problem (1)-(2). We have

sizq _ VCOS(q&)ﬁCOS(‘I&), g #0. (4)

All nonconstant eigenvalues (which depend on the parameter ) are v-points of a
meromorphic complex characteristic function (CF) defined on the set C, [2]:

5 (q) _ qsinq _ qsingq (5)
T cos(g€r) —cos(g€z)  2sin L€ gy At

We obtain this function expressing v from Eq. (4). Zeroes, poles and critical points
of the characteristic function are important for description of the spectrum. So, for
this, from the function (5) we introduce two entire functions

2(2) = sin z Pé(z) _ 2sin(z(& +£2)/2) sin(2(&2 — 51)/2)_ (©)

z z z

All zeroes Z(z) are first order, real and nonnegative (except the point z = 0, that is
the zero point of the second order). If ¢ € C,, then all zeroes of the function Z(q)
coincide with eigenvalue point of the classical case A = 0.

We call the eigenvalue which do not depend on parameter v as a constant eigen-
value point (CE point). We can define the CE point ¢ € C, for any constant eigenvalue
A = ¢? [2]. For the problem (1)—(2) we can find CE point as a root of the system:

Z(q) =0,  Pelg) =0. (7)

If ¢ € 7N, ie. Z(q) # 0, and ¢ is a root of equation Pg(q) = 0, then the point ¢ is
called a pole. Function Pg(z) = 2P£1 (2) - Pg(z) is a product of two functions

Pé(z) — Sin(z(€12+ 62)/2)’ PE(Z) — Sin(z(§22_ 61)/2) ) (8)




For investigation of Complex CF (5) it is very important to find its zeroes and poles.
Zeroes of the characteristic function are first order, real, nonnegative and fixed for all
& =1(&,8&): 2z, = km, k € N. The poles depend on ¢:

pp = (2kn) /(&1 + &), keN,  pi=(2kn)/(&2—&), keN 9)

For the corresponding points zy, p,{,, pi we denominate sets Z, ?é, Eg' Then the set

_ ozl z2 12 Jocceribos o0q i o Z1 . Z1\ z12,
ZS = Zﬁ + Z5 + Z5 describes all zeroes of the function PE’ where Zﬁ = Zf \Zﬁ and

Zg = E'é \ ZEQ are two families of the first order zeroes, Zéz = ?51. N Eg is a family

of the second order zeroes. If £ /&5 is irrational number, then the second order zeroes
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Fig. 2. Domain N for &1 = m1/n1, & = ma/n2 € Q.

¥

do not exist. If & /& = m/n € Q, where m,n € N, then the second order zeroes of
the set Zﬁu can be discovered by the following formula:

pi2 = 2n/(&d)kr = 2m/(&d)kn, k€N, d = ged(n —m;n +m). (10)
We consider the following sets: two families of the first order poles P} := Zé \ Z and
7362 = ZEQ \ Z and a set of the second order poles 73612 = Zém \ Z. Also we consider
the set of the constant eigenvalues points C¢ := Cg + Cg +C!2, where Cg = Zg nz
and Cg = Zg N Z are sets of the points with removable singularity, CéQ = Zém NZis
the set of the points with the first order pole; a set of zeroes Zg =2\ Cf'

Case &1 = my/n1,€2 = ma/ne € Q: In this case £ /& € Q and for all &, the
set CEQ # @ and there exist a few special cases for other sets of poles and constant
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Fig. 3. Domain N for &1/&2 =m/n € Q, &1,&2 € Q.
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eigenvalues. For example if € = (8/21,20/21), then all sets ’Pé, ’Pg, 7)612, Cé, Cg, Cém
and Z¢ are not empty (see Fig. 1). The other example is if & = (6/17,15/17), then
all sets are not empty, except Cé, C§ (C1 = C? = C{?, see Fig. 2(a)). Further, if
& = (4/11,10/11), then the sets Pé? = Cé = g = @ and P{? = C{? (Fig. 2(b)).
2(c)—(h) the set ’Pé # @& however the set ’Pg is empty. In the
cases of Figs. 2(c)-(d) exist second order pole (there Figs. 2(e)—(h) 77512 = o). For
the & = (4/9,8/9), & = (5/12,11/12), € = (1/2,5/6) the set Cé # @ and also
for & = (5/12,11/12) the set Cg # &. In the case Fig. 2(g) first family constant
eigenvalue do not exist and for the case Figs. 2(d),(h) both sets Cé and Cg are empty.

For the fixed & values, when n; = ny = n and my + ma = n (see Figs. 2(1)—(1)):
Pé = @ and PéQ = ©@. In contrast to the case shown in Figs. 2(k) and (1), when

= (1/10,9/10) and € = (1/7,6/7), then the set Pg is not empty (see Figs. 2(i)—(1)).
For all examples (i)—(1) in Fig. 2, the set Cé # &, but the constant eigenvalue points

In the cases Figs.

depending on second order pole family are obtained only for examples (i),(k) in Fig. 2.
For this instance, we can use expressions (9)—(10) and get poles

pr = (2ningkm)/my,  pr = (2ninokm)/m_, pi? = (2ningkw)/d, keN. (11)
From here, the constant eigenvalue points are
cp = (2ninokm)/dy, ci = (2ningkn)/da, ¢} = (2ninokm)/di2, k€N, (12)
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where my = mani+ming, m— = mani—ming, d = ged(m_;my), dy = ged(2ny; m4),
do = ged(2ne;m_), dia = ged(2ng; my;m_).

Case &1 /€2 =m/n € Q, &1,&62 & Q: In this case & + &, & — & € Q. In
consequence, there exist no constant eigenvalues (Cg = &, (see Fig. 3). So, in this

case we have two families of the first order poles in Pé and Pg, respectively, and the
second order poles in 7)612. Note, that for the special case & /& = (I —1)/(1+ 1),
1<l €N, P? =g, in consequence p? = pi? (see Fig. 3(b)).

Case &1/&2 ¢ Q: In this case at least one number & + &5 or & — & is irrational.
If&+& ¢ Qand & — & € Q then CF have two families of the first order poles in Pg

and ’Pg, respectively. Second order poles and constant eigenvalue points do not exist
(see Figs. 4(a), (b)). If & + & = m4 /ny € Q then Cé # @ and constant eigenvalue
points exist ci = p}n#dlk = Zon,jaik = 2ng/dikm, k€ N, di = ged(2ng;my)
where ny = ning, my = man; + miny (see Figs. 4(c) and 4(e)). In this case if
&1+ & # 2/l then P§2 =g, C2 =o and Cém = . In addition, if & + & # 2/1 is not
satisfied, then the set Pé is also empty. If & — & = m_/n_ € Q then Cg # & and
= p?n,/ko = Zon_ jdyk = 2n_/dokm, k € N, dy = ged(2n_;m_), where ny = nina,
m_ = maony —mine. The other sets of constant eigenvalue points (Cl, Cgm) and poles
(me) are empty if & + & # 2/1 (Fig. 4(d)). If this condition is not satisfied then,
additionally, Pg = & (see Fig. 4(f)).

3 Conclusion

The main result of the article is the classification of poles and zero points. The
dependence of zeros and poles on the integral BC parameters & and & is investigated.
The constant eigenvalues non-existence condition (sets Cé, C§ and Cém are empty) is

&1/& =m/n € Q, &,5 ¢ Q. If the following condition & /& ¢ Q is satisfied, then
Pl2 = @ and C}? = @. For all £ and & satisfying condition &1, &, € Q, the set C1? is
13 € €

not empty.
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REZIUME

Sturmo ir Liuvilio uzdavinio su nelokaligja integraline krastine salyga
charakteristinés funkcijos nuliai ir poliai
A. Skucaité ir A. Stikonas

Straipsnyje pateikiami nauji rezultatai, gauti tiriant diferencialinio Sturmo ir Liuvilio uzdavinio su
nelokaligja integraline krastine salyga spektro struktura. Pateikti nauji rezultatai, aprasantys nuliy,
poliy ir pastoviyjy tikriniy reiksmiy pasiskirstyma ir priklausomybe nuo parametry &1 ir &s.

Raktiniai ZodZiai: integralinés krastinés salygos, Sturmo ir Liuvilio uzdavinys, charakteristiné funkcija.
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