
✐

✐

“LMD15_Pupeikis” — 2016/1/12 — 17:32 — page 113 — #1
✐

✐

✐

✐

✐

✐

Lietuvos matematikos rinkinys ISSN 0132-2818

Proc. of the Lithuanian Mathematical Society, Ser. A Vol. 56, 2015

DOI: 10.15388/LMR.A.2015.20 pages 113–118

Fast Fourier transform revisited

Rimantas Pupeikis

Institute of Mathematics and Informatics, Vilnius University

Akademijos 4, LT-08663 Vilnius

E-mail: rimantas.pupeikis@mii.vu.lt

Abstract. Using FFT (fast Fourier transform), it is assumed, that some signal samples
in a respective period N are updated by a sensor in real time. It is urgent for every new
signal sample to have new frequency samples (f.s.). The idea is that FFT should not be
recalculated with every new signal sample, it is needed just to modify it, when the new
sample replaces the old one.

Keywords: digital signal processing (DSP), discrete Fourier transform (DFT).

1 Introduction

It is known [1, 2] that some problems, encountered with FFT applications to measured
samples of signals, are not generally understood, e.g. if some samples or even one
sample in the given period is replaced by new samples or one sample, respectively,
and for each such case we have to obtain a new spectrum immediately. In such a case,
it is needed to modify DFT in order to recalculate on-line only some products of the
Fourier ‘code matrix’.

2 Statement of the problem

We consider a discrete-time finite duration real-valued signal {x(n)} of length L (i.e.,
{x(n)} = 0 for n < 0 and n > L) that has the Fourier transform

X(ω) =

L−1∑

n=0

x(n)e−jωn, ∀ω ∈ 0, 2π. (1)

Here j is the imaginary unit. When we sample {X(ω)} at equally spaced frequencies
ωk = 2πk/N , ∀k ∈ 0, N − 1, with N > L, the resultant samples are as follows [2]:

X(k) ≡ X

(
2πk

N

)

=

N−1∑

n=0

x(n)e−j2πkn/N , ∀k ∈ 0, N − 1. (2)

For convenience, the upper index in the sum has been increased from L− 1 to N − 1
since {x(n)} = 0 for n > L. Here N is the total number of samples of the basic real-
valued signal x(n), ∀n ∈ 0, N − 1 under consideration. The relation in (2) is called
DFT of {x(n)} and is used for transforming the sequence {x(n)} into a sequence of
f.s. {X(k)} of length N .

http://dx.doi.org/10.15388/LMR.A.2015.20
mailto:rimantas.pupeikis@mii.vu.lt

✐

✐

“LMD15_Pupeikis” — 2016/1/12 — 17:32 — page 114 — #2
✐

✐

✐

✐

✐

✐

114 R. Pupeikis

Assume that at any moment tl the network of sensors is simultaneously evaluated
the set of DFT samples {X(n)} by processing the signal samples {x(n)}. At time
moment tl+1 the new set of current samples {xnew (n)} enter memory replacing the
previous samples {xold(n)}. For the moment it is determined that most of signal’s
samples are equivalent to the previous samples. Only about five percent or less of
current samples {xnew (n)} are different. In such a case, it is not efficient to recal-
culate the basic spectrum samples anew, especially, when the calculations speed is a
main issue. Therefore, it is important to work out an approach for modifying DFT
algorithm in order to decrease the calculation time significantly.

The aim of the paper is to work out an approach that would update the f.s. X(k),
∀k ∈ 0, N − 1 as fast as possible with a new sensor’s samples that emerge and replace
the previous ones.

3 On-line FFT

Let us formulate now the corollary for recalculating the f.s. X(k), ∀k ∈ 0, N − 1,
when new sensor’s samples appear in the given period N while the respective old
samples of a signal {x(n)} vanish.

Corollary 1. The current f.s. X(k), ∀k ∈ 0, N − 1 are calculated by the recursive

formula









X(0)
X(1)

...

X(N − 1)
︸ ︷︷ ︸

current f.s.










=










X(0) +∆X(0)
X(1) +∆X(1)

...

X(N − 1)
︸ ︷︷ ︸

previous f.s.

+∆X(N − 1)
︸ ︷︷ ︸

correction










, (3)

assuming that some new samples emerge and replace the previous ones. Here spectrum

samples are calculated by the ordinary FFT :









X(0)
X(1)

...

X(N/2− 1)
︸ ︷︷ ︸

previous f.s.










=









X1(0) +W
(0)
N X2(0)

X1(1) +W
(1)
N X2(1)

...

X1(N/2− 1) +W
(N/2−1)
N X2(N/2− 1)









(4)

if 0 6 k 6 N/2− 1 and









X(N/2)
X(N/2 + 1)

...

X(N − 1)
︸ ︷︷ ︸

previous f.s.










=









X1(0)−W
(0)
N X2(0)

X1(1)−W
(1)
N X2(1)

...

X1(N/2− 1)−W
(N/2−1)
N X2(N/2− 1)









(5)

if N/2 6 k 6 N − 1,

X1(k) =

N/2−1
∑

m=0

x(2m)W
(mk)
N/2 , X2(k) =

N/2−1
∑

m=0

x(2m+ 1)W
(mk)
N/2 (6)

✐

✐

“LMD15_Pupeikis” — 2016/1/12 — 17:32 — page 115 — #3
✐

✐

✐

✐

✐

✐

Fast Fourier transform revisited 115

∀k ∈ 0, N − 1. Here x(2m), x(2m+1) for varying m are samples of {x(n)}, W
(nk)
N =

e−j2πnk/N .

Proof of Corollary 1. Current spectrum samples can be represented as follows:










X(0)
X(1)

...
X(N/2− 1)
︸ ︷︷ ︸

current f.s.










=









X̃1(0) +W
(0)
N X̃2(0)

X̃1(1) +W
(1)
N X̃2(1)

...

X̃1(N/2− 1) +W
(N/2−1)
N X̃2(N/2− 1)









(7)

if 0 6 k 6 N/2− 1 or










X(N/2)
X(N/2 + 1)

...
X(N − 1)
︸ ︷︷ ︸

currentf.s.










=









X̃1(0)−W
(0)
N X̃2(0)

X̃1(1)−W
(1)
N X̃2(1)

...

X̃1(N/2− 1)−W
(N/2−1)
N X̃2(N/2− 1)









(8)

if N/2 6 k 6 N − 1,

X̃1(k) =

N/2−1
∑

m=0

x̃(2m)W
(mk)
N/2 , X̃2(k) =

N/2−1
∑

m=0

x̃(2m+ 1)W
(mk)
N/2 , (9)

∀k ∈ 0, N − 1. Here x̃(2m), x̃(2m + 1) for varying m are new samples of {x(n)}.
However,

N/2−1
∑

m=0

x̃(2m) =

N/2−1
∑

m=0

{
x(2m) +∆x(2m)

}
(10)

and
N/2−1
∑

m=0

x̃(2m+ 1) =

N/2−1
∑

m=0

{
x(2m+ 1) +∆x(2m+ 1)

}
. (11)

Here ∆x(2m), ∆x(2m+ 1) are corrections for old samples. Then, it follows

X̃1(k) = X1(k) +

N/2−1
∑

m=0

∆x(2m)W
(mk)
N/2

︸ ︷︷ ︸

correction

,

X̃2(k) = X2(k) +

N/2−1
∑

m=0

∆x(2m+ 1)W
(mk)
N/2

︸ ︷︷ ︸

correction

. (12)

The corollary is proven by substituting right-hand side terms of equations (3) into (7)
and (8), respectively. ⊓⊔

Liet. matem. rink. Proc. LMS, Ser. A, 56, 2015, 113–118.

✐

✐

“LMD15_Pupeikis” — 2016/1/12 — 17:32 — page 116 — #4
✐

✐

✐

✐

✐

✐

116 R. Pupeikis

4 Example

The discrete-time periodic signal x(n) = {. . . 24, 8, 12, 16, 20, 6, 10, 14, . . .}. By inspec-
tion, the period N = 8. The DFT is computed by

















X(0)
X(1)
X(2)
X(3)
X(4)
X(5)
X(6)
X(7)
︸ ︷︷ ︸

current f.s.

















=










1 1 1 . . . 1

1 W8 W 2
8 . . . W 7

8

1 W 2
8 W 4

8 . . . W 14
8

...
...

...
...

...

1 W 7
8 W 14

8 . . . W 49
8
























24
8
12
16
20
6
10
14















=















110
4− 4.83j
22 + 16j
4− 0.83j

22
4 + 0.83j
22− 16j
4 + 4.83j















, (13)

using the known Fourier ‘code’ matrix with twiddle factors as follows:

W8 = W 9
8 = W 25

8 = W 49
8 = a(1− j), W 2

8 = W 10
8 = W 18

8 = W 42
8 = −j,

W 3
8 = W 35

8 = b(1 + j), W 4
8 = W 12

8 = W 20
8 = W 28

8 = W 36
8 = −1,

W 5
8 = W 21

8 = b(1− j), W 6
8 = W 14

8 = W 30
8 = j,

W 7
8 = W 15

8 = a(1 + j), W 8
8 = W 16

8 = W 24
8 = 1.

Here a = 0.7071 and b = −a. In this paper the spectrum samples are obtained also
using FFT of the form


















X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)
︸ ︷︷ ︸

current f.s.


















=


















G(0) +W 0
8H(0)

G(1) +W 1
8H(1)

G(2) +W 2
8H(2)

G(3) +W 3
8H(3)

G(0)−W 0
8H(0)

G(1)−W 1
8H(1)

G(2)−W 2
8H(2)

G(3)−W 3
8H(3)

︸ ︷︷ ︸

current FFT terms


















=















110
4− 4.83j
22 + 16j
4− 0.83j

22
4 + 0.83j
22− 16j
4 + 4.83j















, (14)

where

G(k) =

3∑

m=0

x(2m)W 2mk
4 , H(k) =

3∑

m=0

x(2m+ 1)W
(2m+1)k
4 , ∀k ∈ (0, 7). (15)

The same results we obtain launching Matlab’s function fft : X = fft([24, 8, 12, 16, 20,
6, 10, 14], 8). Then, we changed the data set x(n) as follows x(n) = . . . 24, 8, 12, 16, 20,
10, 10, 14, The correction vector in time domain is of the form ∆x(n) = . . . 0, 0, 0,
0, 0, 4, 0, 0, We calculate correction terms by (13) and using Matlab function:
fft([00000400], 8). Corrections of frequency values are: ∆X(0) = 4, ∆X(1) = −2.828+
2.828j, ∆X(2) = −4j, ∆X(3) = 2.828 + 2.828j, ∆X(4) = −4, ∆X(5) = 2.828 −

✐

✐

“LMD15_Pupeikis” — 2016/1/12 — 17:32 — page 117 — #5
✐

✐

✐

✐

✐

✐

Fast Fourier transform revisited 117

2.828j, ∆X(6) = 4j, ∆X(7) = −2.828− 2.828j. Continuing, we can write for current
f.s. the recursive relationship


















X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)
︸ ︷︷ ︸

current


















=


















G(0) +W 0
8H(0) +∆X(0)

G(1) +W 1
8H(1) +∆X(1)

G(2) +W 2
8H(2) +∆X(2)

G(3) +W 3
8H(3) +∆X(3)

G(0)−W 0
8H(0) +∆X(4)

G(1)−W 1
8H(1) +∆X(5)

G(2)−W 2
8H(2) +∆X(6)

G(3)−W 3
8H(3)

︸ ︷︷ ︸

previous FFT terms

+∆X(7)
︸ ︷︷ ︸

correction terms


















=















114
1.17− 2j
22 + 12j
6.83 + 2j

18
6.83− 2j
22− 12j
1.17 + 2j















, (16)

where previous spectrum samples (14) and corrections, calculated above, were used.
Then, we checked up with fft([24, 8, 12, 16, 20, 10, 10, 14], 8). The results obtained by
fft are coincident with (16). Now, it is important to determine the computational
burden, needed to obtain current spectrum values by recursive algorithm (3). Only
N multiplication operations are necessary to calculate the correction terms ∆X(k),
∀k ∈ 0, N − 1, because all the cells of vector ∆x(n) are filled with zeros except one.
Later we need N addition operations, used to add the respective complex-valued
elements in the cells of previous f.s. vector to that in the correction term one. So, to
calculate the spectrum anew by recursive algorithm (3) we need N CMADs (complex
multiplications and additions) and N extra addition operations, in total, after a new
sample emerges and the former one vanishes. On the other hand, the ordinary FFT
requires N log2 N CMADs. It follows from the 8-point DFT example with real-valued
samples set, that 8-point FFT, requires 24 CMADs and 8 extra complex addition
operations if one new sample comes in.

5 Conclusions

For discrete-time signals the DFT coefficient values have been proposed to recursively
determine if one new signal sample or new small portion of samples emerge in the given
period N of a realization {x(n)} replacing the old one sample or old portion of samples,
respectively. The number of operations for their speedy calculating is essentially
reduced by the original recursive expression (3) in comparison with the ordinary FFT
procedure used only in the case of fixed values of samples x(n), ∀ n ∈ 0, N − 1 in
a fixed period N . An example of 8-point DFT, presented here, has shown us the
efficiency of the recursive approach, too. The recursive algorithm could be effective
in real-time applications for very large N values (N > 210) because it renders us a
possibility to calculate a varying spectrum on-line with greatly less number of CMADs
as compared with well-known Cooley-Tukey FFT.

References

[1] P. Duhamel and M. Vetterli. Fast Fourier transforms: a tutorial review and a state of
the art. Signal Process., 19:259–299, 1990.

Liet. matem. rink. Proc. LMS, Ser. A, 56, 2015, 113–118.

✐

✐

“LMD15_Pupeikis” — 2016/1/12 — 17:32 — page 118 — #6
✐

✐

✐

✐

✐

✐

118 R. Pupeikis

[2] J.G. Proakis and D.G. Manolakis. Digital Signal Processing, Principles, Algorithms, and

Applications. Prentice Hall, New Jersey, 2008.

REZIUMĖ

Peržiūrint diskrečiąją Furjė transformaciją
R. Pupeikis

Tariama, kad taikant diskrečiąją Furjė transformaciją, signalo atskaitų apdorojimui skaitmeniškai,
kai kurios jo atskaitos esti jutiklių, veikiančių realiu laiku, pakeičiamos naujomis atskaitomis. Būtina
kiekvienai naujai atsiunčiamai atskaitai skaičiuoti naują spektrą. Tokiu atveju siūloma neperskai-
čiuoti spektrą naujai, o jį modifikuoti rekurentiškai, žymiai sutaupant aritmetinių operacijų skaičių.
Pateiktas 8-atskaitų spektro skaičiavimo įprastiniu ir rekurentiniu būdais diskrečiąja Furjė transfor-
macija pavyzdys.

Raktiniai žodžiai: skaitmeninis signalų apdorojimas (SSA), diskrečioji Furjė transformacija (DFT).

	Introduction
	Statement of the problem
	On-line FFT
	Example
	Conclusions
	References

