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Abstract. In this paper, we obtain the representation of the nullspace for m-th order
discrete linear problems with nonlocal conditions. An example is given.
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Introduction

In paper [1], we considered a method how to calculate directly generalized discrete
Green’s function for the second order discrete problem with two nonlocal conditions.
The basic part of the investigation was played by the solution to the nullspace of the
discrete problem.

Let us introduce the set Xn := {0, 1, 2, . . . , n} and the space of complex functions
F (Xn) := {u|u : Xn → C}. In this paper, we are going to represent the nullspace for
the m-th order discrete linear problem with m nonlocal conditions

(Lu)i := ami ui+m + · · ·+ a1iui+1 + a0i ui = fi, a0i , a
m
i 6= 0, i ∈ Xn−m, (1)

〈Lk, u〉 :=

n∑

j=0

Lj
kuj = gk, k = 1,m, (2)

where aj ∈ F (Xn−m), j = 0,m, f ∈ F (Xn−m), Lk ∈ F ∗(Xn), gk ∈ C for k = 1,m
and n > m.

1 Equivalent matrix problem

The solution u ∈ F (Xn) is uniquely represented by the column matrix u = (u0, u1, . . . ,
un)

T ∈ C(n+1)×1 but every discrete linear functional Lk ∈ F ∗(Xn) is described
by a complex row matrix Lk = (L0

k, L
1
k, . . . , L

n
k) ∈ C1×(n+1), k = 1,m. Simi-

larly, the operator L : F (Xn) → F (Xn−m) is uniquely represented by the ma-
trix L = (Lij) ∈ C(n−m+1)×(n+1), which has rows Li· = (0, . . . , 0, a0i , a

1
i , . . . , a

m
i ,
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0, . . . , 0) ∈ C1×(n+1), where the element a0i follows after i zeroes for each i ∈ Xn−m.
Thus, the problem (1)–(2) can be rewritten in the equivalent matrix form Au = b

with b = (f0, f1, . . . , fn−m, g1, . . . , gm)T ∈ C(n+1)×1 and A = (L,L1,L2, . . . ,Lm)T ∈
C

(n+1)×(n+1).

2 N(A) basis

Let us now focus our investigation on the homogeneous problem

Au = 0. (3)

First, we note that L is the trapezoid matrix with nonzero diagonal elements ai0, i ∈
Xn−m. So, it has the full row rank, precisely, rankL = n−m+ 1. Then the nullity
d := dimN(A) ∈ {0, 1, 2, . . . ,m}. The nullspace N(A) of the problem (3) is nonzero
if the matrix A is singular, or equivalently [2]

D(L)[u] :=

∣∣∣∣∣∣

〈L1, u
1〉 〈L2, u

1〉 . . . 〈Lm, u1〉
. . . . . . . . . . . .

〈L1, u
m〉 〈L2, u

m〉 . . . 〈Lm, um〉

∣∣∣∣∣∣
= 0 (4)

for every fundamental system u = (u1, u2, . . . , um) of the equation (1). Here we
denoted the collection of functionals L = (L1, L2, . . . , Lm). If dimN(A) = m, then
the nullspace of problem the (3) is coincident with uk, k = 1,m, – the fundamental
system of (1). Let us find the representation of the nullspace if 0 < d < m.

As in paper [1], the rank of matrix A is rankA = n + 1 − d. Thus, there are
d functionals Lkj

, j = 1, d, those are linear combinations of other (linearly inde-
pendent) rows of A, representing the operator L and rest functionals Lkj

, j =

d+ 1,m. Moreover, the matrix A has linearly independent columns with indexes
s0 = 0, s1 = 1, . . . , sn−m = n − m, . . . , sn−d. Other columns with indexes sn−d+j ,
j = 1, d, are linear combinations of them. We note that si = i, i ∈ Xn−m, and
sn−m+j ∈ {n−m+ 1, . . . , n}, j = 1,m.

As in [1], we introduce the corresponding auxiliary nonsingular problem

(Lω)i = g1i , i ∈ Xn−m,

〈lkj
, ω〉 := ωsn−d+j

= 0, j = 1, d, (5)

〈lkj
, ω〉 := 〈Lkj

, ω〉 = g1n−m−d+j, j = d+ 1,m,

where ω ∈ F (Xn) and g1 = g1(usn−d+1
, . . . , usn) ∈ C(n−d+1)×1 is of the form

g1i = −
d∑

l=1

usn−d+l

{
Li,sn−d+l

, i ∈ Xn−m,

L
sn−d+l

km−n+d+i
, i = n−m+ 1, n− d.

(6)

Let us denote the matrix of this auxiliary problem (5) by Ã. Similarly as in [1], we
derive the solution of (3), which is given below

usi = ωsi =

n−m∑

j=0

Gsi,jg
1
j +

m∑

j=d+1

g1n−m−d+jv
kj

si
, i ∈ Xn−d, (7)
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and usi , i = n− d+ 1, n, are arbitrary complex numbers. Here G ∈ F (Xn ×Xn−m)
is ordinary discrete Green’s function of the problem (6), since we constructed the
problem (6) with the nonsingular matrix [1]. Moreover, vk, k = 1,m, form the
biorthogonal fundamental system of the problem (6) [2]. For example, taking usn−d+l

,

l = 1, d, such as usn−d+l
· usn−d+j

= δlj , l, j = 1, d, we get g1i = Li,sn−d+l
, i ∈ Xn−m,

and g1i = L
sn−d+l

km−n+d+i
, i = n−m+ 1, n− d, for every fixed l = 1, d. Here δij is the

Kronecker delta.

Thus, we obtain the particular basis of the nullspace wl, l = 1, d, for the problem
(1)–(2), where (7) simplifies to

wl
si

= −
n−m∑

j=0

Gsi,jLj,sn−d+l
−

n−d∑

j=n−m+1

v
km−n+d+j
si L

sn−d+l

km−n+d+j
, i ∈ Xn−d. (8)

The equality I = Ã−1Ã, where I = (δij) ∈ C(n+1)×(n+1) is the identity matrix, is
given by I = (G,v1, . . . ,vm)(L,L1,L2, . . . ,Lm)T . Rewriting it in the discrete form,
we have δij =

∑n−m

p=0 GipLpj +
∑m

k=1 v
k
i L

j
k, i, j ∈ Xn. We apply this equality to (8),

use δsi · δsn−d+l
= 0 for i ∈ Xn−d and l = 1, d, and obtain

wl
si

=

d∑

j=1

vkj

si
L
sn−d+l

kj
, i ∈ Xn−d, l = 1, d. (9)

We remember that wl
si

· wl
sj

= δij , i, j = n− d+ 1, n, and get the nullspace of the
problem (1)–(2), spanned by d linearly independent vectors

wl =

n−d∑

i=0

d∑

j=1

vkj
si
L
sn−d+l

kj
esi + esn−d+l , l = 1, d. (10)

3 N(A∗) basis

Applying literally the proof from [1], we find the nullspace w̃l of the adjoint matrix A∗,
where

w̃l = −

n−m∑

i=0

〈Lkl
, G·i〉e

i −

m∑

i=d+1

〈
Lkl

, vki

〉
en−m+ki + en−m+kl , l = 1, d. (11)

Theorem 1 The problem (1)–(2) with a singular matrix is solvable if and only if the
following orthogonality conditions are valid:

n−m∑

i=0

〈Lkl
, G·i〉fi +

m∑

i=d+1

〈
Lkl

, vki

〉
gki

= gkl
, l = 1, d.

Liet. matem. rink. Proc. LMS, Ser. A, 57, 2016, 59–64.
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4 Applications to a particular problem

Let us now consider the m-th order differential problem with one Bicadze–Samraskii
condition

u(m) = f(x), x ∈ [0, 1], (12)

u(0) = g̃1, u′(0) = g̃2, . . . , u(m−2)(0) = g̃m−1, (13)

u(1)− γu(ξ) = g̃m, (14)

for ξ ∈ (0, 1), all γ, g̃j ∈ R, j = 1,m, and real f ∈ C[0, 1]. Let us introduce the mesh
ωh := {xi : xi = ih, nh = 1} and suppose ξ is coincident with a mesh point. i.e. ξ =
sh for s = 1, n− 1. We also denote fi = f(xi+1)h

m and gk = hk−1g̃k for k = 1,m− 1,
and gk = g̃k. Let us introduce finite differences ∇0ui = ui, ∇ui = ∇1ui = ui+1 − ui

and ∇k+1ui = ∇(∇ku)i for k > 0. Then we apply the finite difference method on the
uniform grid ωh and obtain the m-th order discrete problem

(Lu)i := ∇mui = fi, i ∈ Xn−m, (15)

〈Lk, u〉 := ∇k−1u0 = gk, k = 1,m− 1, (16)

〈Lm, u〉 := un − γus = gm, (17)

that can be represented by a linear system Au = b, introduced in Section 1, with the
matrix A = A(γ), γ ∈ R.

First, we consider the classical problem (15)–(17) with γ = 0 and the matrix

Ã = A(0). Then applying the additivity property of a column of the determinant
and remembering that the determinant with two equal columns is equal to zero, we
rewrite the condition (4) as follows

Dcl : = D(L1, L2, . . . , Lm−2, δn)[u] = D(δ0, δ1 − δ0, L3, . . . , Lm−2, δn)[u]

= D(δ0, δ1, L3, . . . , Lm−2, δn)[u]−D(δ0, δ0, L3, . . . , Lm−2, δn)[u]

= D(δ0, δ1, L3, . . . , Lm−2, δn)[u] = . . . = D(δ0, δ1, δ2, . . . , δm−2, δn)[u],

were 〈δi, u〉 := ui, i ∈ Xn. Furthermore,

Dcl =

∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1 1
0 h 2h . . . (m− 2)h 1

0 h2 (2h)2 . . .
(
(m− 2)h

)2
1

. . . . . . . . . . . . . . . . . .

0 hm−1 (2h)m−1 . . .
(
(m− 2)h

)m−1
1

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

h 2h . . . (m− 2)h 1

h2 (2h)2 . . .
(
(m− 2)h

)2
1

. . . . . . . . . . . . . . .

hm−1 (2h)m−1 . . .
(
(m− 2)h

)m−1
1

∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣

h 2h . . . (m− 2)h 1

h2 − h (2h)2 − 2h . . .
(
(m− 2)h

)2
− (m− 2)h 0

. . . . . . . . . . . . . . .

hm−1 − hm−2 (2h)m−1 − (2h)m−1 . . .
(
(m− 2)h

)m−1
−
(
(m− 2)h

)m−2
0

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

h 2h . . . (m− 2)h 1
h(h− 1) 2h(2h− 1) . . . (m− 2)h

(
(m− 2)h− 1

)
0

. . . . . . . . . . . . . . .

hm−2(h− 1) (2h)m−2(2h− 1) . . .
(
(m− 2)h

)m−2(
(m− 2)h− 1

)
0

∣∣∣∣∣∣∣∣

= (−1)m

∣∣∣∣∣∣∣∣∣

h(h− 1) 2h(2h− 1) . . . (m− 2)h
(
(m− 2)h− 1

)

h2(h− 1) (2h)2(2h− 1) . . . ((m− 2)h)2
(
(m− 2)h− 1

)

. . . . . . . . . . . .

hm−2(h− 1) (2h)m−2(2h− 1) . . .
(
(m− 2)h

)m−2(
(m− 2)h− 1

)

∣∣∣∣∣∣∣∣∣

= (−1)m−1
m−2∏

k=0

(kh− 1)

∣∣∣∣∣∣∣∣

h 2h . . . (m− 2)h
h2 (2h)2 . . . ((m− 2)h)2

. . . . . . . . . . . .

hm−2 (2h)m−2 . . .
(
(m− 2)h

)m−2

∣∣∣∣∣∣∣∣

= (−1)m−1
m−2∏

k=0

(kh− 1)

∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1
0 h 2h . . . (m− 2)h
0 h2 (2h)2 . . . ((m− 2)h)2

. . . . . . . . . . . . . . .

0 hm−2 (2h)m−2 . . .
(
(m− 2)h

)m−2

∣∣∣∣∣∣∣∣∣∣

,

where all kh − 1 6= 0, because kh 6 (m − 2)h 6 (n − 2)h < nh = 1 for every
k = 0,m− 2. From here follows that the classical problem (15)–(17) with γ = 0
always has the unique exact solution, since the existence condition (4) of the unique
exact solution is always fulfilled:

Dcl = (−1)m−1
m−2∏

k=0

(kh− 1)D(δ0, δ1, . . . , δm−2)
[
1, x, . . . , xm−2

]
6= 0.

Here D(δ0, δ1, . . . , δm−2)[1, x, . . . , x
m−2] 6= 0 is the condition (4) for the corresponding

(m − 1)-th order problem (15) with initial conditions, which always has the unique

solution [2]. Thus, det Ã 6= 0.
Now we note that the condition (4) for the problem (15)–(17) with any real γ is

of the form

D(L)[u] := Dcl − γD(δ0, δ1, . . . , δm−2, δs)[u] = Dcl
(
1− γvms

)
, (18)

where vmi := D(δ0, δ1, . . . , δm−2, δi)[u]/D
cl, i ∈ Xn, is the unique exact solution to

the classical problem Lu = 0, 〈Lj , u〉 = 0, j = 1,m− 1, un = 1 [2]. So, (18) equals to
zero if and only if γvms = 1. This condition is equivalent to detA = 0.

Let us find the nullspaces to the problem (15)–(17) with the singular matrix, i.e.
detA = 0 or, equivalently, γvms = 1.

First, we have d = dimN(A) = 1, because all rows of the nonsingular matrix Ã

are linearly independent, and the singular A differs from Ã with the last row only.

Liet. matem. rink. Proc. LMS, Ser. A, 57, 2016, 59–64.
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From here also follows that the functional Lm is a linear combination of other rows
of A, representing the operator L and functionals Lk, k = 1,m− 1. Thus, k1 = m
and kj = j − 1, j = 2,m.

Calculating the determinant with respect to the last row, i.e. det Ã = Mn 6= 0, we
obtain that the first n-th order minor Mn of the (n+1)-th order matrix Ã is nonzero.
It follows that the matrix A also has the same first n-th order nonzero minor Mn,
since matrices A and Ã differs only with the last row. Then first n columns of A are
linearly independent. They have indices si = i, i ∈ Xn−1. The last column, which
has the index sn = n, is a linear combination of them because dimN(A) = 1.

Now we note that the auxiliary problem (5) for problem (15)–(17) is coincident
with the classical problem (15)–(17) (γ = 0). Since Dcl 6= 0, this classical problem
has ordinary discrete Green’s function Gcl

ij , i ∈ Xn, j ∈ Xn−m, and the ordinary

biorthogonal fundamental system vk, k = 1,m. Thus, G = Gcl. Simplifying (10),
we get w = vm ∈ N(A), which spans the nullspace of A. Moreover, the nullspace
N(A∗) is spanned by the nonzero vector (11), given below

w̃ = γ

n−m∑

j=0

Gcl
sje

j + γ

n−1∑

j=n−m+1

vj−n+m
s ej + en ∈ N

(
A∗

)
.

According to [2], we can always find explicit representations of functions Gcl and vk,
k = 1,m.

Corollary 2 The problem (15)–(17) has a solution if and only if

γ

n−m∑

i=0

Gcl
sifi + γ

m−1∑

k=1

gkv
k
s + gm = 0.
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REZIUMĖ

m-osios eilės diskrečiojo uždavinio su nelokaliosiomis sąlygomis nulių aibė
G. Paukštaitė, A. Štikonas

Šiame darbe yra gautas m-osios eilės diskečiojo tiesinio uždavinio su nelokaliosiomis sąlygomis nulių
aibės pavidalas. Pateiktas pavyzdys.

Raktiniai žodžiai: diskretusis uždavinys, nelokaliosios sąlygos, nulių aibė.

http://dx.doi.org/10.1007/s10986-014-9238-8

	Equivalent matrix problem
	N(A) basis
	N(A*) basis
	Applications to a particular problem
	References

