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Abstract. In this paper we consider Pailler encryption and RSA textbook signature. We
show that due to valuable homomorphic property these algorithms can be used together to
obtain a valid signature on a certain combination of ciphertexts. Our goal is to show that this
combination of algorithms provide security against chosen plaintext and chosen ciphertext
attacks.
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1 Introduction

Nowadays many algorithms of asymmetric encryption and digital signature are known.
In our paper we consider two homomorphic cryptographic primitives, namely Pailler
encryption and RSA textbook signature. The considered cryptographic primitives
possess a homomorphic property. This valuable property allows us to apply these
algorithms to distinct messages and obtain a valid result for a combination of these
messages (sum or product).

Another important similarity between two protocols is the fact, that both algo-
rithms use an integer n, which is a product of two primes p and q. Due to this
similarity we are able to link these two algorithms together, i.e. we use Pailler en-
cryption on the message m to obtain a ciphertext c, which is then signed using RSA
textbook signature. This combination of two schemes can be used to create e-money
or in e-voting.

Though is was previously shown in [3], that RSA textbook signature scheme is
existentially forgeable, we consider the resistance of the combination of it with Pailler
encryption to chosen plaintext and chosen ciphertext attacks (CPA and CCA respec-
tively).

2 Mathematical background

In this section we provide brief overview of cryptographic primitives mentioned above.
Note however, that we shall be using the Carmichael function λ(·) in stead of Euler
totient function φ(·). The following steps are performed once and are used in both
cryptographic primitives:

• Generate two large distinct primes p and q of the roughly same size;

• Compute n = pq and λ(n) = lcm(p− 1, q − 1).
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2.1 Pailler encryption

In Pailler asymmetric encryption protocol the public key PuK = n, and the private
key PrK = λ(n).

Assume, that a message to be encrypted is encoded by an integer m. The encryp-
tion is performed as follows [4]:

• Select a random number r ∈ Z
∗

n2 ;

• Compute the ciphertext c = (1 + n)mrn mod n2. Note, that c ∈ Z
∗

n2 .

Note, that since the multiplicative order ordn2(1 + n) = n it is reasonable to turn
a message to an integer m ∈ Zn.

The plaintext message m is computed using an identity:

m =
cλ(n) mod n2 − 1

n
λ−1(n) mod n.

Note, that division is performed over set of integers Z.

2.2 RSA textbook signature scheme

The main idea of this paper is to link two cryptographic primitives by using the same
value n for both Pailler encryption and RSA textbook signature. The steps to execute
the latter are presented below [5]:

2.2.1 Key generation algorithm

• Select a random integer e, 1 < e < λ(n), such that gcd(e, λ(n)) = 1. It rea-
sonable to consider values of e having a short bit-length and small Hamming
weight. A common value of e is 216 + 1;

• Find a value of d satisfying the congruence ed ≡ 1 mod λ(n), i.e. compute the
modular multiplicative inverse of e modulo λ(n).

The public key PuK = (n, e), and the private key PrK = d.

2.2.2 Signature generation

Compute the signature s = cd mod n. Note, that s ∈ Z
∗

n.

2.2.3 Signature verification

Let s ∈ Z
∗

n be a signature to be verified.

• Compute c̃ = se mod n;

• Verify if c = c̃. The output of the verification function VerRSA(s) is “Yes” if
the identity holds and “No” otherwise.
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2.3 Homomorphic properties

A useful feature of the Paillier cryptosystem is its homomorphic property [4]:

EncPai(m1) · EncPai(m2) = EncPai

(
(m1 +m2) mod n

)
= EncPai(m),

when m = (m1 +m2) mod n, for all m,m1,m2 ∈ Zn, where EncPai(m) denotes the
Paillier encryption of the message m.

The proof of this relation can be found in [4].
Due to this property Paillier encryption scheme allows computations (multiplica-

tions) to be performed on ciphertext values, as the product of ciphertexts corresponds
to the sum of plaintexts.

Furthermore, RSA signature scheme also has a homomorphic property:

SigRSA(c1) · SigRSA(c2) = SigRSA

(
(c1 · c2) mod n

)
= SigRSA(c),

when c = (c1 · c2) mod n2, for all c, c1, c2 ∈ Z
∗

n2 , where SigRSA(c) denotes the RSA
signature on the ciphertext c.

The proof of this property follows directly from the definition of RSA signature.
Hence, the product of two signatures is equal to the signature on the product of

ciphertexts.
The main advantage of homomorphic property of both algorithms is the fact that

users can combine their messages m1, m2, etc. to obtain a ciphertext of a sum of these
messages without actual knowledge of the whole message m =

∑
k
mk. Furthermore,

users can also obtain a valid signature on a product of ciphertexts c1, c2 without
actual knowledge of the whole ciphertext c =

∏
k
ck.

3 Security proof

Let us assume that the message m is encrypted using Pailler algorithm obtaining
ciphertext c which is signed by RSA signature.

According to [3, 4], we assume, that Paillier encryption scheme is indistinguishable
encryption under a chosen-plaintext attack if random encryption number r is chosen as
random element in Z

∗

n
. We assume, that in this case Paillier encryption is performed

correctly and we will follow this assumption. Then ciphertext c corresponding to the
message m is uniformly distributed in Z

∗

n2 if r is uniformly distriuted in Z
∗

n.
In [1], authors introduced RSA Full–Domain–Hash (FDH) function, which can

be applied for signing with RSA signature scheme. It was shown in [1] and [2] that
this scheme is provably secure, i.e. existentially unforgeable under adaptive chosen-
message attacks in the random oracle model, assuming that inverting RSA is hard,
i.e. extracting a root modulo a composite integer, is hard.

We now prove the following proposition:

Proposition 1 If Paillier encryption and RSA signature has the same modulus n

and message m ∈ Zn, then ciphertext c = EncPai(m) obtained by Paillier encryption

taken modulo n, is in RSA FDH, i.e. c ≡ z mod n, z ∈ Z
∗

n.

Proof. It is clear, that z ∈ Z
∗

n
, since gcd(z, n) = 1 iff gcd(c, n2) = 1. Hence the

composition of function f(·) and EncPai(m) represents the following mapping
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f
(
EncPai(m)

)
: Zn ×Z

∗

n
→ Z

∗

n

and this function range is equal to RSA domain.
Now we have to show that if Paillier encryption is correct, then for any m ∈ Zn,

value z is uniformly distributed in Z
∗

n
for distinct uniform values of r. This comes

from the following two facts:

• Pailler encryption function EncPai(m) is a bijection and hence the value of c is
distributed uniformly in Z

∗

n2 ;

• Since there are exactly n distinct values of c less than n2 that give the same
residue modulo n, the values of z are uniformly distributed in Z

∗

n
.

Hence function f is an n-to-1 mapping Z
∗

n2 → Z
∗

n and the composition
f(EncPai(m)) can be interpreted as a H-function and as a artificial random oracle if
random number r in correct Paillier encryption scheme can be treated as random. ⊓⊔

This implies that element z as a function of r is strongly universal as defined by
Wegman and Carter in [7]. In [6] Vaudenay defines this property as a perfect 1-wise
decorrelation (as denoted by the author). Vaudenay showed in [6], that in this case our
scheme is secure against chosen plaintext attack (CPA) and chosen ciphertext attack
(CCA) respectively (Theorem 7). Hence we have proved, the following proposition:

Proposition 2 If Paillier encryption and RSA signature have the same modulus n

and message m ∈ Zn, then RSA signature s on ciphertext c is existentially unforgeable

under CPA in the random oracle model.

The security of RSA signature now relies on the multiplicative order of z, which
is denoted by ordn(z). To simplify the security analysis, we can use Sophie Germain
primes p′ and q′ (hence p = 2p′ + 1 and q = 2q′ + 1 are primes) to construct the
modulus n. In this case the maximal multiplicative order of Z

∗

n
is defined by the

value of the Carmichael function λ(n) = 2p′q′. The latter expression is also the
canonical representation of λ(n), i.e. only 8 distinct divisors of λ = λ(n) exist. Hence
there are only 8 possible values of ordn(z), since, due to Lagrange theorem, ordn(z)
divides λ. To ensure security of RSA signature we have to exclude small values of λ,
i.e. 1 and 2, which is possible by checking if the following congruences hold:

c ≡ 1 mod n,

z2 ≡ 1 mod n.

In case of at least one correct identity the ciphertext c has to be recalculated, i.e.
Pailler encryption algorithm is executed with a different value of r. We assume, that
none of latter congruences hold. In this case an element z generates a significantly
large subgroup 〈z〉 of cardinality ordn(z).

4 Conclusions

In this paper we considered Pailler asymmetric encryption and RSA texbook signa-
ture. We have shown that by using the same modulus n we obtain a ciphertext c,
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which reduced modulo n is in RSA FDH. Hence the operation of reduction modulo n

can be interpreted as a hash function. Furthermore, since RSA FDH is existentially
unforgeable, we have shown that a combination of considered algorithms provides
security against CPA in random oracle model.
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REZIUMĖ

Apie RSA parašo ant Pajė šifrogramos saugumą
A. Mihalkovich, E. Sakalauskas

Darbe nagrinėjamas Pajė asimetrinis šifravimas ir RSA parašas. Kadangi abu algoritmai turi ho-
momorfiškumo savybę, tai šie algoritmai gali būti panaudoti kartu teisėtam parašui ant tam tikros
šifrogramų kambinacijos gauti. Mūsų tikslas yra parodyti, jog šių algoritmų kombinacija užtkrina
atsparumą pasirinktos žinutės ir pasirinktos šifrogramos atakoms.

Raktiniai žodžiai: saugumo analizė, elektroninis parašas, asimetrinis šifravimas.
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