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Abstract. It is assumed that linear time-invariant (LTI) system input signal samples are
updated by a sensor in real time. It is urgent for every new input sample or for small part of
new samples to update a convolution as well. The idea is that fast Fourier transform (FFT)
algorithm, used to calculate output frequency samples (f.s.), should not be recalculated with
every new input sample. It is needed just to modify the convolution algorithm, when the
new input sample replaces the old one. An example of computation of the convolution with
ordinary and modified 8-point Fourier code matrix is presented.
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1 Introduction

Convolution is a mathematical tool in digital signal and image processing [3, 2]. It
is used in filtering, correlation, compression and in many other applications [3]. Al-
though the concept of convolution is not new, the efficient computation of convolution
is still an open topic [3]. As the burden of data is constantly increasing, there appears
request for fast manipulation with large data. In wireless sensor networks, where
a new set of input samples simultaneously replaces previous one, it is non-effective
to recalculate convolution each time, even with FFT procedures [1], when only small
part of new samples differs from previous one. It is needed to modify discrete FT
(DFT) in order to recalculate on-line only some products of the convolution with the
respective samples replaced [4].

2 Statement of the problem

Suppose that x(n) is an arbitrary input of a LTI system having a kernel h(n), too.
The output y(n) of the system is the linear convolution of the form

y(n) = x(n) ⋆ h(n). (1)

Here ⋆ is the asterisk of the convolution. The DFT of (1) is known as a fast convolution
(Fig. 1) [3]:

Y (k) ≡ Y

(
2πk

N

)

= X

(
2πk

N

)

H

(
2πk

N

)

, ∀ k ∈ 0, N − 1, (2)

where

H(k) ≡ H

(
2πk

N

)

, X(k) ≡ X

(
2πk

N

)
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x(n) X(k) 

Y(k)= X(k) H(k) 

y y(n) 

h(n) H(k) 

FFT 

FFT 

Multiplication Inverse FFT 

Fig. 1. Fast convolution. Signals: x(n), h(n), y(n). DFTs: X(k), H(k), Y(k).

are DFTs of h(n) and x(n), respectively, N is the total number of samples of the basic
real-valued signals x(n), y(n) and h(n), ∀n ∈ 0, N − 1 under consideration.

In a convolution scheme we consider a discrete-time finite duration real-valued
signal x(n) of length L (i.e., x(n) = 0 for n < 0 and n > L) that has the Fourier
transform

X(ω) =

L−1∑

n=0

x(n)e−jωn, ∀ω ∈ 0, 2π, (3)

where j is the imaginary unit. When we sample X(ω) at equally spaced frequencies
ωk = 2πk/N , ∀ k ∈ 0, N − 1, with N > L, the resultant samples are as follows [3]:

X(k) ≡ X

(
2πk

N

)

=

N−1∑

n=0

x(n)e−j2πkn/N , ∀ k ∈ 0, N − 1. (4)

For convenience, the upper index in the sum has been increased from L− 1 to N − 1
since x(n) = 0 for n > L. The relation in (4) is called DFT of x(n). It is used for
transforming the sequence x(n) into f.s. X(k) of length N .

Assume that at any moment ti the network of sensors is simultaneously evaluated
the set of f.s. X(k) by processing the signal samples x(n). At time moment ti+1 the
new set of current samples x(n) enter memory replacing the previous samples. For
the moment it is determined that most of signal’s samples, indeed, are approximately
equal to the previous ones. Only small part of current samples is different.

The aim of the paper is to update on-line the fast and the linear convolutions.

3 Recursive updating

It is not efficient to recalculate the basic spectrum samples X(k) anew even using
FFT algorithms, if only one new signal sample x(i) or even a small portion of new
samples emerges replacing previous samples. Therefore, we will use the solution of
a convolution problem, applying the recursive DFT algorithm.

At any time moment t a signal y(n) can be recovered from frequency samples
Y (k), ∀ k ∈ 0, N − 1 by the IDFT (inverse DFT) [1, 3]:

yt(n) =
1

N

N−1∑

k=0

Y

(
2πk

N

)

ej2πkn/N , ∀n ∈ 0, N − 1. (5)
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At t+1 time moment in sensor network some new samples of signal x(n) emerge and
replace the previous ones. In such a case, (5) can be rewritten as follows

yt+1(n) =
1

N

N−1∑

k=0

{

Y

(
2πk

N

)

+∆Y

(
2πk

N

)}

ej2πkn/N , ∀n ∈ 0, N − 1. (6)

In (6):

∆Y (k) ≡ ∆Y

(
2πk

N

)

≡ ∆X

(
2πk

N

)

H

(
2πk

N

)

≡ ∆X(k)H(k). (7)

In the matrix form ∆X(k) is the (N × 1) correction vector in the frequency-domain
of the form











∆X(0)
∆X(1)
∆X(2)

...
∆X(N − 1)
︸ ︷︷ ︸

corrections












=











1 1 1 . . . 1

1 WN W 2
N . . . WN−1

N

1 W 2
N W 4

N . . . W
2(N−1)
N

...
...

...
...

...

1 WN−1
N W

2(N−1)
N . . . W

(N−1)(N−1)
N






















∆x(0)
∆x(1)
∆x(2)

...
∆x(N − 1)
︸ ︷︷ ︸

corrections












,

(8)

which is related with the time domain (N × 1) correction vector ∆x(k) by (N ×N)
Fourier code matrix WN with twiddle factors: WN ,W 2

N , . . . ,WN−1
N , . . . .

Let us assume that only four values ∆x(0), ∆x(2), ∆x(4) and ∆x(N − 1) in the
right-hand side correction vector are not equal to zeros. Expression (8) obtains the
form












∆X(0)
∆X(1)
∆X(2)

...
∆X(N − 1)
︸ ︷︷ ︸

corrections












==











1 1 1 1

1 W 2
N W 4

N WN−1
N

1 W 4
N W 8

N W
2(N−1)
N

...
...

...
...

1 W
2(N−1)
N W

4(N−1)
N W

(N−1)(N−1)
N



















∆x(0)
∆x(2)
∆x(4)

∆x(N − 1)
︸ ︷︷ ︸

corrections









,

(9)

because most columns of matrix WN and respective rows of the right-hand side
correction vector in (8) were deleted, and, then, compressed. Now, matrix WN has
the size (N × 4). The size of the right hand-side correction vector is (4× 1). Thus,
the calculation operations of ∆X(k), using compressed WN and ∆x(k) are reduced
significantly. Afterwards, ∆Y (k) is calculated, using the same ∆X(k) and (7). Then,
it is substituted in (6). We obtain

yt+1(n) =
1

N

N−1∑

k=0

{

Y (k)ej2πkn/N +∆Y (k)ej2πkn/N
}

. (10)

In recursive form (10) is

yt+1(n) = yt(n) +
1

N

N−1∑

k=0

∆Y (k)ej2πkn/N . (11)

Recursive formula (11) gives us possibility to update the output’s samples on-line.

Liet. matem. rink. Proc. LMS, Ser. A, 57, 2016, 97–102.
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4 Example

Let us assume that the LTI system’s discrete-time periodical input samples are:
x(n) = {. . . 24, 8, 12, 16, 20, 6, 10, 14, . . .}. By inspection, the period of the input is
N = 8. The DFT is computed by [4]

















X(0)
X(1)
X(2)
X(3)
X(4)
X(5)
X(6)
X(7)
︸ ︷︷ ︸

current f.s.

















=










1 1 1 . . . 1
1 W8 W 2

8 . . . W 7
8

1 W 2
8 W 4

8 . . . W 14
8

...
...

...
...

...
1 W 7

8 W 14
8 . . . W 49

8
























24
8
12
16
20
6
10
14















=















110
4− 4.83j
22 + 16j
4− 0.83j

22
4 + 0.83j
22− 16j
4 + 4.83j















, (12)

using the known Fourier ‘code’ matrix with twiddle factors as follows:

W8 = W 9
8 = W 25

8 = W 49
8 = a(1− j), W 2

8 = W 10
8 = W 18

8 = W 42
8 = −j,

W 3
8 = W 35

8 = b(1 + j), W 4
8 = W 12

8 = W 20
8 = W 28

8 = W 36
8 = −1,

W 5
8 = W 21

8 = b(1− j), W 6
8 = W 14

8 = W 30
8 = j, W 7

8 = W 15
8 = a(1 + j),

W 8
8 = W 16

8 = W 24
8 = 1.

Here a = 0.7071 and b = −a. Assume that the kernel h(n) = {. . . 1,−0.85, 0.85,−0.7,
0.7,−0.25, 0.25,−0.1, . . .}. It has the same period. The DFT of h(n) is:

















H(0)
H(1)
H(2)
H(3)
H(4)
H(5)
H(6)
H(7)
︸ ︷︷ ︸

current f.s.

















=










1 1 1 . . . 1
1 W8 W 2

8 . . . W 7
8

1 W 2
8 W 4

8 . . . W 14
8

...
...

...
...

...
1 W 7

8 W 14
8 . . . W 49

8
























1
−0.85
.85
−0.7
0.7

−0.25
0.25
−0.1















=















0.9
0.3 + 0.248j
0.6 + 0.3j

0.3 + 1.448j
4.7

0.3− 1.448j
0.6− 0.3j

0.3− 0.248j















. (13)

Then, the f.s. Y (k) = 100{0.99, 0.024 − 0.0045j, 0.084 + 0.162j, 0.024 + 0.0555j,
1.034, 0.024 − 0.0555j, 0.084 − 0.162j, 0.024 + 0.0045j} of the filter output y(n) are
obtained by (2). Afterwards, IDFT was computed by Matlab function: y = ifft(Y, 8).
We obtain eight discrete-time samples of the system output signal y(n). They are:
28.6,−5.5, 24.7, 2.6, 26.2,−3.7, 21.7, 4.4.

Assume that sensors send current portion of x(n) samples, between which only
samples x(0), x(2), x(4) and x(7) differ in values from previous ones. At the moment,
they are: x(0) = 20, x(2) = 15, x(4) = 25, x(7) = 10. Thus, ∆x(0) = −4, ∆x(2) = 3,
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∆x(4) = 5, ∆x(7) = −4. Then, ∆X(k) is computed according to















∆X(0)
∆X(1)
∆X(2)
∆X(3)
∆X(4)
∆X(5)
∆X(6)
∆X(7)















=
















1 1 1 1
1 W 2

8 W 4
8 W 7

8

1 W 4
8 W 8

8 W 14
8

1 W 6
8 W 12

8 W 21
8

1 W 8
8 W 16

8 W 28
8

1 W 10
8 W 20

8 W 35
8

1 W 12
8 W 24

8 W 42
8

1 W 14
8 W 28

8 W 49
8






















−4
3
5
−4






=















0
−11.83− 5.83j

−2− 4j
−6.17 + 0.17j

8
−6.17− 0.17j

−2 + 4j
−11.83 + 5.83j















, (14)

and multiplied by H(k) from (13). Afterwards, using IDFT for their product we obtain
the third term in recursive expression (11). It was added to yt(n), finally. We obtain
the updated values of current yt+1(n) according to (11) as follows: 32.25,−7.05, 28.35,
−0.45, 31.95,−10.05, 27.45,−3.45. We calculate f.s. of current Y (k): fft([32.25,−7.05,
28.35,−0.45, 31.95,−10.05, 27.45,−3.45]). Then, we checked up the recursive solution
with Matlab: firstly, f.s. X(k) were calculated by fft([20, 8, 15, 16, 25, 6, 10, 10], 8),
secondly, f.s. Y (k) were obtained as product of X(k) and H(k), thirdly, samples of
y(k) were determined by ifft. The results obtained by recursive (11) and ordinary
methods are coincident.

The example shows us how effective can be the recursive approach. It allows us to
reduce Fourier code matrix WN in (9). It let us to cut the total number of CMADs
(complex multiplications and additions) needed for calculations with complex valued
f.s. In such a case, we spend here 16 CMADs. At last, it assures updating of linear (1)
and fast (2) convolutions on-line.

5 Conclusions

The fast convolution have been proposed to recursively determine if one new signal
sample or new small portion of samples emerge in the given period N of a realization
x(n) replacing the old one sample or old portion of samples, respectively. The num-
ber of operations for their speedy calculating is essentially reduced by the original
recursive expression (11) in comparison with the ordinary FFT procedure used only
in the case of fixed values of samples x(n). The recursive algorithm could be effective
in real-time applications for very large N .
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REZIUMĖ

Patikslinta greitoji sąsūka
R. Pupeikis

Tariama, kad taikant diskrečiąją Furjė transformaciją, signalo atskaitų apdorojimui skaitmeniškai,
kai kurios jo atskaitos esti jutiklių, veikiančių laiku, pakeičiamos naujomis atskaitomis. Būtina kiek-
vienai naujai atsiunčiamai atskaitai skaičiuoti naują sistemos išėjimą. Siūloma neperskaičiuoti
išėjimo spektrą naujai, o jį modifikuoti rekurentiškai, žymiai sutaupant aritmetinių operacijų skaičių.
Pateiktas sąsūkos skaičiavimo įprastiniu ir rekurentiniu būdais diskrečiąja Furjė transformacija pa-
vyzdys.

Raktiniai žodžiai: tiesinė sistema, DFT, IDFT, GFT, sąsūka.
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