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Abstract. It is proved that cubic and quartic equations in real numbers can be solved
elementarily, avoiding complex numbers and derivatives. Corresponding algorithms are pre-
sented.
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The school with the third and fourth degree equations encounters rarely (actually
only when they have rational solutions). They are not considered in mathematical
classes or even in facultative courses – the widespread belief is that they are needed to
deal with complex numbers (see [1]). The purpose of this paper – to show that to solve
elementary these equations is perfectly possible, and school knowledge is sufficient for
this.

Cubic equations. General form of cubic (third degree) equation is

ax3 + bx2 + cx+ d = 0 (a 6= 0). (1)

The equation can be divided by a 6= 0, and this form of the equation is called general
one too:

x3 + bx2 + cx+ d = 0. (2)

The equation can be further simplified: entering a new variable y by substitution
x = y+ k and selecting parameter k one can achieve that the equation has no longer
a member of the second degree. Really, after inserting x = y+k in equation (2), only
the two first addends x3 and bx2 give the terms with y2. Because

x3 + bx2 = x2(x+ b) = (y2 + 2yk + k2)(y + k + b),

then only terms ky2 + by2 + 2ky2 have y2. Thus y2 disappears if 3k + b = 0, i.e.,
k = −b/3. Thus, for equation (2) had not a quadratic member, the substitution can
be made x = y− b/3. The resulting equation is called reduced one (the variable here
again is denoted by x):

x3 + px+ q = 0. (3)

The number of solutions. Cubic equation (3) always has at least one solution:
on the left standing cubic function f(x) is positive for sufficiently large x and negative
for large negative x, so f(x) graph crosses the x-axis. Cubic equation may have one,
two or three solutions – for example, equations

(x− 1)3 = 0, (x− 1)2(x − 2) = 0, (x− 1)(x− 2)(x− 3) = 0

have sets of solutions, respectively, {1}, {1, 2}, {1, 2, 3}.
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Elementary theory of cubics and quartics 17

More than three solutions cubic equation can have not. Indeed, suppose that
equation (3) has a solution α. This means that α3 + pα + q = 0. Now (3) it is easy
to factorize:

x3 + px+ q = x3 + px+ q − α3 − pα− q

= x3 − α3 + px− pα = (x− α)(x2 + xα + α2 + p).

Thus, other solutions of equation (3) we find from the quadratic equation

x2 + xα+ α
2

+ p = 0. (4)

So equation (4) can add to α 0, 1 or maximum 2 new (i.e., not coinciding with α)
solutions of equation (3).

We see that the cubic equation solving and determination of number of solutions
knowing at least one solution becomes trivial. That is why it is very easy to solve the
cubic equation, which has a rational solution. By the way, it is easy to find rational
solutions of every equation of any degree with rational coefficients. For example, if
the coefficients of an equation are integers and the first coefficient is 1 (such a form
we can give to every equation with rational coefficients), then rational solutions can
be only integers – positive and negative divisors of the free member (see [2]). So it
is worth the solving of every equation with rational coefficients always begin from
rational solutions.

Case p> 0. The cubic equation (3) can be further simplified to make the modulus
of coefficient p 6= 0 equal to 3 (when p = 0, then equation (3) becomes x3 = −q and
comprises a unique solution x = − 3

√
q).

Again, we use a simple linear substitution x = ky and properly select k. Our
equation (3) is converted into

k3y3 + pky + q = 0, y3 + py/k2 + q/k3 = 0.

In the case p > 0 we choose k as follows: p/k2 = 3, k2 = p/3, k =
√

p/3. Thus

substitution x = y
√

p/3 makes the coefficient of y equal to 3. The free member

becomes q/k3 = −3
√
3q/(p

√
p). Noting it for brevity sake −2m (in other words,

denoting −3
√
3q/(2p

√
p) = m), we have equation

y3 + 3y − 2m = 0. (5)

Now we try find some solution. Let us do substitution y = z − 1/z:

(z − 1/z)3 + 3(z − 1/z)− 2m = 0, z3 − 1/z3 − 2m = 0,

z6 − 2mz3 = 1, z6 − 2mz3 +m2 = 1 +m2,
(

z3 −m
)2

= 1 +m2,

z3 −m = ±
√

m2 + 1, z3 = m±
√

m2 + 1, z =
3

√

m±
√

m2 + 1.

Both of these z values give the same solution of equation (5)

y =
3

√

√

m2 + 1 +m+
3

√

√

m2 + 1−m.

Liet. matem. rink. Proc. LMS, Ser. A, 58, 2017, 16–22.
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18 J.J. Mačys

Let’s make sure that equation (5) has no more solutions. Recall equation (4) –
now it looks like this:

y2 + yα+ α2 + 3 = 0, where α =
3

√

√

m2 + 1 +m+
3

√

√

m2 + 1−m.

The discriminant of the quadratic equation is equal to

α2 − 4(α2 + 3) = −3α2 − 12.

Since it is negative, equation (5) has no more solutions. Thus, equation (3) in the
case p > 0 has the only solution. We find it going back from y to x = y

√

p/3.

Case p< 0. It is more difficult to solve equation (3), when p is negative.We apply
substitution x = ky again. Now in the equation

y3 + py/k2 + q/k3 = 0

we choose k as p/k2 = −3, k2 = −p/3, k =
√

−p/3. Denoting the resulting free
member −2m, we have the equation

y3 − 3y − 2m = 0. (6)

We apply substitution y = z + 1/z:

(z + 1/z)3 − 3(z + 1/z)− 2m = 0, z3 + 1/z3 − 2m = 0, z6 − 2mz3 = −1,

(z3 −m)2 = m2 − 1. (7)

Here awaits us a surprise – equation (7) has solutions not always, and we have to
consider three subcases: m2 > 1, m2 = 1 and m2 < 1.

Subcase p < 0, m2 > 1 (the unique solution). If m2 > 1, then

z3 −m = ±
√

m2 − 1, z =
3

√

m±
√

m2 − 1,

and both values of z give the same solution:

y = z + 1/z =
3

√

m+
√

m2 − 1 +
3

√

m−
√

m2 − 1.

Let us convince that this solution is unique. The modulus of this solution is greater
than 2:

y2 = (z + 1/z)2 = z2 + 2 + 1/z2 = z2 − 2 + 1/z2 + 4 = (z − 1/z)2 + 4 > 4.

Really, y2 = 4 would mean y = ±2, and then from equation (6)

2m = y3 − 3y = y(y2 − 3) = ±2, m = ±1

(but in our case must be m2 > 1). Other solutions could be given by (4) equation,
which now looks like this:

y2 + yα+ α2 − 3 = 0, where |α| > 2.
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Elementary theory of cubics and quartics 19

The discriminant of it

α2 − 4(α2 − 3) = 12− 3α2 = 3(4− α2)

is negative, and equation (4) has no solutions. Thus, equation (6) in case of p < 0,
m2 > 1 has the unique solution.

Subcase p < 0, m2 = 1 (two solutions). If m2 = 1, then from (7) equation z3 = m.
When m = 1, then z = 1, y = z + 1/z = 2. Equation (6) is transformed into
y3 − 3y − 2 = 0, which can be factorized even without equation (4) treatment:

y3 − 3y − 2 = 0, (y − 2)(y2 + 2y + 1) = 0, (y − 2)(y + 1)2 = 0.

Thus, (6) (and (3)) in this case has two solutions. Now we return to x.
When m = −1, then z = −1, y = −2. Equation (6) becomes

y3 − 3y + 2 = 0, (y + 2)(y2 − 2y + 1) = 0, (y + 2)(y − 1)2 = 0,

and as well (hence equation (3)) has two solutions. We return to x.

Subcase p < 0, m2 < 1 (three solutions). If m2 < 1, then equation (7) has
no solutions, and substitution y = z + 1/z did not find a solution. But here helps
trigonometry: the substitution y = 2z puts equation (6) in the form 8z3−6z−2m = 0,
i.e. 4z3 − 3z −m = 0. Do substitution z = cosϕ:

4 cos3 ϕ− 3 cosϕ−m = 0, cos 3ϕ = m.

This equation has solutions specifically when |m| < 1 (that is m2 < 1). Further,

3ϕ = 2kπ ± arccosm, ϕ =
2

3
kπ ± 1

3
arccosm,

z = cosϕ = cos

(

2

3
kπ ± 1

3
arccosm

)

, y = 2z = 2 cos

(

2

3
kπ ± 1

3
arccosm

)

, k ∈ Z.

Based on the reduction formulas we make sure we get only three different y values
(more than three solutions cubic equation can have not!):

2 cos

(

1

3
arccosm

)

, 2 cos

(

2

3
π +

1

3
arccosm

)

, 2 cos

(

4

3
π +

1

3
arccosm

)

.

We return to x. General cubic equation (3) is solved.

An example. Consider a concrete equation in the form (3):

x3 − 3x− 4 = 0. (8)

Solve it anew, “without theory”. (Of course, the theory is always born of concrete
examples.) Think of the school formulas having something like x3 − 3x. There comes
to mind the formula

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3 = a3 + b3 + 3ab(a+ b)

and its particular case (a± 1/a)3 = a3 ± 1/a3 ± 3(a± 1/a).

Liet. matem. rink. Proc. LMS, Ser. A, 58, 2017, 16–22.
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20 J.J. Mačys

The last formula offers that in equation (8) it is worth to use substitution x =
y + 1/y. Then the equation turns into

(y + 1/y)3 − 3(y + 1/y)− 4 = 0,

y3 + 1/y3 + 3(y + 1/y)− 3(y + 1/y)− 4 = 0, y3 + 1/y3 − 4 = 0.

We have the equation, quadratic with respect to y3, so we can solve it (you can even
not use formula of the quadratic equation solutions):

y6 − 4y3 + 1 = 0, (y3 − 2)2 = 3, y3 − 2 = ±
√
3,

y3 = 2±
√
3, y =

3

√

2±
√
3.

The first value of y returning to x = y + 1/y gives

x =
3

√

2 +
√
3 + 1/

3

√

2 +
√
3 =

3

√

2 +
√
3 +

3

√

2−
√
3

(the same solution gives the other value of y too). Still need to make sure that there
are no other solutions (by the use of the substitution x = y + 1/y you can not find
the solutions x ∈ (−2, 2), because |y+1/y| = |y|+1/|y| = (

√

|y|− 1/
√

|y|)2+2 ≥ 2).

Equation (8) can be factorized dividing by x − 3

√

2 +
√
3 − 3

√

2−
√
3, but it would

be quite an unpleasant job. It performs for us the formula (4), which becomes as

follows: x2 + xα + α2 − 3 = 0, where α =
3

√

2 +
√
3 +

3

√

2−
√
3. The discriminant

of this equation α2 − 4(α2 − 3) = 12 − 3α2 is negative because α2 = (y + 1/y)2 =
(y − 1/y)2 + 4 > 4. Thus, equation (8) has a unique solution.

The Cardano formula. It is now clear that examined ways you can immediately
apply to equation (3).

Case 1: q2/4+p3/27 > 0. Perform substitution x = 3
√
y−p/(3 3

√
y). Find y, then

return to x:

x =
3

√

−q/2 +
√

q2/4 + p3/27 +
3

√

−q/2−
√

q2/4 + p3/27

(this is so called the Cardano formula). The solution is unique.

Case 2: q2/4 + p3/27 = 0. Cardano’s formula gives the solution − 3
√
4q, then

equation (4) gives the solution 3

√

q/2. When q = 0 (and hence p = 0), we obtain a
unique solution x = 0. When q 6= 0, we obtain two solutions.

Case 3: q2/4 + p3/27 < 0. Obviously, p < 0. Performing substitution x =
√

4|p|/3 cosϕ, we obtain the equation 4 cos3 ϕ − 3 cosϕ = q
√
27/(2p

√

|p|), cos 3ϕ =

q
√
27/(2p

√

|p|). Since 27q2 < −4p3, then module of right side is less than 1. We
finde ϕ, and then all three solutions of equation (3):

x =
√

4|p|/3 cos
(

1

3
arccos

(

3q
√
3/2p

√

|p|
)

)

,

α =
√

4|p|/3 cos
(

2

3
π +

1

3
arccos

(

3q
√
3/2p

√

|p|
)

)

,

α =
√

4|p|/3 cos
(

4

3
π +

1

3
arccos

(

3q
√
3/2p

√

|p|
)

)

.
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As a rule namely formulas of this section you find in manuals (cf. [2]), so one can
get solutions without solving equation (3).

Quartic equation. Common fourth degree equation is

ax4 + bx3 + cx2 + dx + e = 0 (a 6= 0).

It can be divided by a, so it is enough to consider the equation

x4 + ax3 + bx2 + cx+ d = 0.

After substitution x = y− a/4, we eliminate of it a member of the third degree, so it
is enough to know how to solve the equation

x4 + bx2 + cx+ d = 0. (9)

If the fourth degree equation has rational solutions (at least one rational solu-
tion α), it is simple to solve it: the left-hand side can be factorized again, separating
the x−α, and it remains to solve the cubic equation. Consider (9) equation (when it
does not have rational solutions; naturally, we can also deal with when it has).

If c = 0, equation (9) is biquadrate, and adopting the new variable x2 = y it
becomes quadratic one. By the way, it is easy to decompose biquadrate trinomial
x4 + bx2 + d. If b2/4− d ≥ 0, then

x4 + bx2 + d = (x2 + b/2)2 − (b2/4− d)

= (x2 + b/2 +
√

b2/4− d)(x2 + b/2−
√

b2/4− d).

If b2/4− d < 0, then d > b2/4 (i.e. d positive),
√
d > b/2, 2

√
d− b > 0, and

x4 + bx2 + d = (x2 +
√
d)2 − x2(2

√
d− b)

= (x2 +
√
d+ x

√

2
√
d− b)(x2 +

√
d− x

√

2
√
d− b).

If c 6= 0, then the left side of equation (9) is always possible to write as the
difference of two squares:

(x2 +m)2 − p(x+ n)2 = 0 (p > 0).

Thus the left-hand side can be factorized into two quadratic trinomials,

(x2 + x
√
p+m+ n

√
p)(x2 − x

√
p+m− n

√
p),

and you solve two quadratic equations.
Left to figure out how to find a suitable m, p and n values. In equation

(x2 +m)2 − p(x+ n)2 = x4 + bx2 + cx+ d

removing brackets and comparing the coefficients of x2, x1 and x0, we have the system
of equations for suitable m, p, n to find:

2m− p = b, −2np = c, m2 − pn2 = d. (10)

Liet. matem. rink. Proc. LMS, Ser. A, 58, 2017, 16–22.
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Since c 6= 0, from second equation p 6= 0, then n = −c/(2p). From first equation
m = (b + p)/2. After inserting the third equation becomes (b + p)2/4− c2/(4p) = d.
After multiplying by 4p, we get the cubic equation (cf. [1, 3])

p3 + 2bp2 − 4dp+ b2p− c2 = 0.

This equation has positive solution (namely, this new observation is the fourth degree
equation solving key). Really, the function f(p) on the left at p = 0 is equal to
f(0) = −c2, namely negative (recall c 6= 0) and for the sufficiently large positive p it
is positive, so the graph of f(p) intersects p axis at any point p0 ∈ (0,∞). Since we
can solve the cubic equation, we find positive solution p0, receiving the solution of
the system (10) (m, p, n) = (b/2+ p0/2, p0,− 1

2
c/p0). Thus, we are able to decompose

the left side of equation (9) and, consequently, to solve any fourth order equation. It
may have 1, 2, 3, 4 or no solutions (e.g. x4 + 1 = 0 has no solutions).

It turns out that to solve the general equation of the fifth degree is not possible.
However, the most important statement (the fundamental theorem of algebra) remains
correct [1]: each n-th degree polynomial is a product of linear and quadratic factors.
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REZIUMĖ

Elementari trečiojo ir ketvirtojo laipsnių lygčių teorija
J.J. Mačys

Įrodyta, kad trečiojo ir ketvirtojo laipsnio lygtis realiųjų skaičių aibėje galima išspręsti elementariai –
nesiremiant nei kompleksiniais skaičiais, nei išvestinėmis. Pateikti atitinkami algoritmai.

Raktiniai žodžiai: trečiojo laipsnio lygtys, ketvirtojo laipsnio lygtys, racionalieji sprendiniai, daugia-
narių skaidymas.
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