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Abstract. Very important and instructive trigonometric equation is considered. The solu-
tions from different manuals and reference books are examined, mistakes of these solutions
are discovered. It is shown how to make the solution of the equation shorter, how to present
the answer more visually.
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At present, in the school is very little attention given to trigonometric equations,
so for the reader it will be quite useful to get acquainted with one of the classic
equations

tg(πtgx) = ctg(πctgx). (1)

The equation has many merits. One – it is very aesthetically pleasing, and that could
compete with it unless its twin – equation

sin(π sinx) = cos(π cosx),

while the latter just much simpler. Second – solving it requires substantial knowledge
of trigonometry – inverse trigonometric functions, these connecting relationships, def-
inition domains, value ranges and so on. Third, it faced dealing with serious logical
difficulties related to the issues of equations equivalence.

An interesting history of this equation. Probably the first time it was given during
the entrance exams to the Moscow Lomonosov University, then got into the well
reputable directories and tasks encyclopedic publications. Unfortunately, we pierced
them convinced that by equation solving and interpreting has been made everywhere
vexatious mistakes. The least quantity of these is made in the books [1] and [2]. By
the way, the solution is actually everywhere copyed from [1] down, and the mistakes
in enacting solution only confirms the level of difficulty of the equation.

We provide a solution of [1], only indicate how it can be improved, how more
aesthetic to record the answers. It is also very important for developing mathematical
taste – the latter question is unnecessary in most cases ignored. But the main thing –
we were able to find a new, shorter solution and get a simpler answer – as mentioned, in
the literature is exposed the same solution and is indicated the same answer from [1].
Incidentally, different forms of the answer is often by solving trigonometric equations
in several ways.
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24 J.J. Mačys, J. Sušinskas

Begin to solve equation (1) absolutely necessary from the definition domain defined
by the relationships

tgx 6= m+
1

2
, ctgx 6= p (m, p ∈ Z). (2)

There equation (1) is equivalent to the equations tg(πtgx) = tg(π2 − πctgx), π tg x =
π

2 − π ctg x+ kπ,

tgx =
1

2
−

1

tgx
+ k, (3)

2tg2x− (2k + 1)tgx+ 2 = 0,

tgx =
1

4

(

2k + 1±
√

(2k + 1)2 − 16
)

, k ∈ Z. (4)

Thus, solving equation (1) we need to reject tgx values not covered by the definition
domain (2), i.e. those involving tgx of the form m + 1

2 or 1
m

. (By the way, no way
here instead of m writing k like that done in the book [1] – m and k have nothing in
common.)

Let us define set of k values where tg x is rational (then it will be easier to figure
out when they are of the form m+ 1

2 or 1
m

). First of all, it should be (2k+ 1)2 > 16,
thus values −2,−1, 0, 1 must be rejected. Second, tg x will be rational only, when
(2k + 1)2 − 16 will be the square of integer. Since this difference is odd, it should be

(2k + 1)2 − 16 = (2a+ 1)2, or (2k + 1)2 − (2a+ 1)2 = 16,

(k − a)(k + a+ 1) = 4.

It is now possible to solve number of systems k − a = . . . , k + a + 1 = . . . (this
suggests the authors in the books [1, 2, 3]), but you can immediately determine the
appropriate values of k and significantly shorten the solution. The figures (2k + 1)2

ir (2a + 1)2 depends to the sequence of odd squares 1, 9, 25, 49, 81, . . . . Differences
between adjacent members increases and beginning from 49 are larger than 16. Even
greater are differences between non-adjacent members of the sequence. Hence, the
difference 16 provides only 52−32, so (2k+1)2 = 52, 2k+1 = ±5, k = −3 and k = 2.

Thus, the rational tangent in formula (4) provides only k = −3 and k = 2. We
have to determine when the k values give tangents of forms 2m+1

2 or 1
m

.

When k = −3, equation (4) turns to tgx = 1
4 (−5 ± 3), i.e. tg x = −2 and

tg x = − 1
2 . The value −2 is impossible to write neither as 2m+1

2 , nor as 1
m

, where m

is integer (in fact, the equations 2m+1
2 = −2 and 1

m
= −2 have no integer solutions).

Hence, tg x = −2 is suited to the our equation (1) and gives solutions x = nπ−arctg 2.
The value − 1

2 can be written as 1
−2 , thus tg x = − 1

2 does not suit to equation (1).

When k = 2, equation (4) turns to tg x = 1
4 (5 ± 3), i.e. tg x = 2 and tg x = 1

2 .
The value 2 is neither of form 2m+1

2 , nor of form 1
m

, thus tg x = 2 is suitable to
equation (1), x = nπ + arctg 2. The value 1

2 is of form 1
m

, so it has to be rejected.

Thus, we will definitely fit tangent values of both signs “+” and “−” for all integer k
with the exception of −3,−2,−1, 0, 1, 2. With k = −3 and k = 2 suites only one of
signes, thus they must be included to answer separately. The answer can be written
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as

x ∈

{

nπ ± arctg2, nπ + arctg
2k + 1±

√

(2k + 1)2 − 16

4

}

, (5)

n ∈ Z, k = 3,±4,±5, . . . .

So it is written in the books [1] and [2], only in the book [1] there is a proofreading
error – not rejected value k = 1. There are a lot of proofreading errors (and not
only proofreading) in the book [3], and before the second arctangent the sign ±
is replaced, thus in so written answer some values of x are included twice. For

example, when k = 3, we have x = nπ ± arctg 7±
√
33

4 , and when k = −4, we have

x = nπ ± arctg −7±
√
33

4 , – after all, it’s the same!
In the beginning we promised to write an answer nicer. Here k values are scattered,

begin from 3. Write sequence (2k+1) with the values k = 3, 4, 5, . . . . and the sequence
(2k + 1) with the values k = −4,−5,−6, . . . :

7, 9, 11, . . . ,

−7,−9,−11, . . . .

It can be seen that they can be written as a sequence (2k+5) with values k = 1, 2, 3, . . .
and as the sequence – (2k+5) with values k = 1, 2, 3 . . . . Connecting can be a single
formula ±(2k + 5), k ∈ N. Now our answer would look like this:

{

nπ ± arctg2, nπ ± arctg
2k + 5±

√

(2k + 5)2 − 16

4
, n ∈ Z, k ∈ N

}

, (6)

or that there be no doubts about the combinations of signs (we had in mind all 4
variants), such as:

{

nπ ± arctg2, nπ ± arctg
2k + 5−

√

(2k + 5)2 − 16

4
,

nπ ± arctg
2k + 5 +

√

(2k + 5)2 − 16

4
, n ∈ Z, k ∈ N

}

. (7)

In this way, notice that the first series of solutions can be obtained from the third
by taking k = 0. Thus the two can be combined into one:

{

nπ ± arctg
2k + 5−

√

(2k + 5)2 − 16

4
, nπ ± arctg

2m+ 5 +
√

(2m+ 5)2 − 16

4
,

k ∈ N, m ∈ N ∪ {0}, n ∈ Z

}

. (8)

By the way, the reader can find that a form of the answer as follows is more repre-
sentative:

{

nπ ± arctg
2k + 5−

√

(2k + 5)2 − 16

4
, nπ ± arctg

2k + 3 +
√

(2k + 3)2 − 16

4
,

n ∈ Z, k ∈ N

}

. (9)

Liet. matem. rink. Proc. LMS, Ser. A, 58, 2017, 23–27.
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It turns out that there is a shorter solution of equation (1), and answer structure
is simpler. Return to equation (3). The solutions we need to reject those when
tg x = m + 1

2 , and those when ctg x = p (m, p ∈ Z). However, if equation (3) has
a solution ctg x = p, it is then tg x + p = k + 1

2 , tg x = k − p + 1
2 . Thus excluding

tg x = m + 1
2 from solutions, we exclude ctg x = p too. Thus, from solutions of

equation (3) is sufficient to exclude the solutions to which tg x = m+ 1
2 .

Further, if tg x = m+ 1
2 , then ctg x = 2

2m+1 , and from equation (3) m+ 1
2+

2
2m+1 =

k + 1
2 ,

2

2m+ 1
= k −m. (10)

It means that 2
2m+1 is integer, which is possible only when 2m+1 is divisor of 2, i.e.,

is equal to one of the numbers 1,−1, 2,−2. But 2m+1 – odd number, thus 2m+1 = 1
or 2m+1 = −1, i.e. m = 0 or m = −1. When m = 0, then from equality (10) k = 2,
and when m = −1, then k = −3.

So even without starting to solve equation (3), we have got an interesting result: if
k = 2, then for equation (1) extraneous solutions may be only solutions of equation (3)
of form tg x = m+ 1

2 = 0 + 1
2 = 1

2 (if there are any); if k = 3, then for equation (1)
extraneous solutions can be only solutions of equation (3) of form tg x = m + 1

2 =
−1 + 1

2 = − 1
2 (if any); for other k values we have no extraneous solutions. This,

incidentally, was established above by analysis of formula (4).
Now solve equation (3) otherwise:

sinx

cosx
+

cosx

sinx
= k +

1

2
,

1

sinx cosx
=

2k + 1

2
,

sinx cosx =
2

2k + 1
, sin 2x =

4

2k + 1
.

The latter equation has no solutions when | 4
2k+1 | > 1, i.e., when |2k + 1| < 4, −4 <

2k + 1 < 4, −5 < 2k < 3, − 5
2 < k < 3

2 , k ∈ {−2− 1, 0, 1}. For other values of k we
get:

2x = 2nπ + arcsin
4

2k + 1
and 2x = (2n+ 1)π − arcsin

4

2k + 1
,

i.e.

x = nπ +
1

2
arcsin

4

2k + 1
and x =

(2n+ 1)

2
π −

1

2
arcsin

4

2k + 1
.

Now we have to reject the extraneous solutions. As we have already set up, they
can be just as k = 2, tg x = 1

2 and k = −3, tg x = − 1
2 .

When k = 2, we have solutions

x = nπ +
1

2
arcsin

4

5
and x = nπ +

π

2
−

1

2
arcsin

4

5
. (11)

Determine, when tg x = 1
2 . Denote arcsin 4

5 = α. Because 0 < α < π

2 and sinα = 4
5 ,

then

cosα =

√

1−
16

25
=

3

5
, tg

α

2
=

sinα

1 + cosα
=

1

2
, tg

(

π

2
−

α

2

)

= ctg
α

2
= 2.
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Thus the first series of (11) must be rejected, and remains the second series x =
(2n+1)π

2 − arcsin 4
5 .

When k = −3, the solutions are

x = nπ −
1

2
arcsin

4

5
and x = nπ +

π

2
+

1

2
arcsin

4

5
. (12)

Now for the first series tg x = − 1
2 , and for a second series tg x = tg(π2+α) = − ctg α

2 =
−2. Thus, the second series in (12) has to be rejected, and remains the first series
x = (2n)π2 − 1

2 arcsin
4
5 .

Join solutions of cases k = 2 and k = −3. Since in one series (2n + 1) are odd
numbers, in the other (2n) are even, they can be combined into a single series:

x =
nπ

2
−

1

2
arcsin

4

5
.

Now we can write the final answer: a set of solutions of equation (1) is

{

nπ

2
−

1

2
arcsin

4

5
,
nπ

2
+

(−1)n

2
arcsin

4

2k + 1
, k = 3,±4,±5, . . . , n ∈ Z

}

. (13)

We have already seen how you can make sure that it is the same (5) set. Here,
the structure of the answer is much simpler – no need of any square root (by the
way, above in solving equation was actually used obvious, but rarely formulated and
substantiated theorem: the square root of a natural number is rational only when this
number is the square of an integer). Of course, this refers to the fact that equation (3)
is quadratic with respect to the tg x but with respect to sin 2x – first degree.

Just as the (5) can be written as (6) – (9), set (13) can be represented by different
variants. Then, for example, formula (6) corresponds to a variant as follows:

{

nπ

2
−

1

2
arcsin

4

5
,
nπ

2
±

1

2
arcsin

4

2k + 5
, n ∈ Z, k ∈ N

}

.
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REZIUMĖ

Fundamentali lygtis
J.J. Mačys, J. Sušinskas

Supažindinama su svarbia ir pamokoma trigonometrine lygtimi. Apžvelgti mokymo priemonėse
pateikti sprendimai, nurodytos tų sprendimų klaidos. Parodyta, kaip galima sprendimą sutrumpinti,
vaizdžiau užrašyti atsakymą.

Raktiniai žodžiai: trigonometrinės lygtys, atvirkštinės trigonometrinės funkcijos, sprendimo metodų
įvairovė, atsakymo pavidalai.
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