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Abstract. In this paper, we investigate the minimizer of the residual for the second order
differential problem with one initial and other nonlocal Bitsadze–Samarskii condition. We
obtain the representation of the minimizer and present an example.
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Introduction

Second order differential problems with nonlocal conditions, various direct represen-
tations of the unique solution using Green’s functions were obtained by Roman [4].
For example, the unique solution to the problem

− u′′ = f(x), x ∈ [0, 1], (1)

u(0) = g1, u′(1) = γu(ξ) + g2, (2)

where f ∈ L2[0, 1], g1, g2, γ ∈ R and ξ ∈ (0, 1), exists and is given by

u = g1 +
γg1 + g2 + γ

∫ 1

0 G(x, y)f(y) dy

1− γξ
x+

∫ 1

0

G(x, y)f(y) dy

if and only if γξ 6= 1. Here we used the Green’s function

G(x, y) =

{
y, y 6 x,
x, y > x

(3)

of the problem (1)–(2) with γ = 0 [4]. If γξ = 1, the problem does not have the unique
solution: there may be infinitely many solutions (consistent problem) or no solutions
(inconsistent problem). In this paper, we will look for the unique function, which
minimizes the residual of the problem (1)–(2) and is "smallest" among all minimizers
of the residual.

1 Existence of the minimizer

We rewrite the problem (1)–(2) into the equivalent vectorial form

Lu = f , (4)

http://dx.doi.org/10.15388/LMR.A.2017.06
mailto:gaile.paukstaite@mif.vu.lt; arturas.stikonas@mif.vu.lt


✐

✐

“LMD17_Paukstaite_Stikonas” — 2017/12/16 — 12:33 — page 29 — #2
✐

✐

✐

✐

✐

✐

The minimizer for the second order differential problem 29

where f = (f, g1, g2)
⊤ ∈ L2[0, 1]×R

2. For the Hilbert space L2[0, 1]×R
2, we use the

inner product (f , f̃ ) = (f, f̃)L2[0,1] + g1 · g̃1 + g2 · g̃2 and the norm

‖f‖ =
√
‖f‖2L2[0,1] + |g1|2 + |g2|2.

Theorem 1 The operator L : H2[0, 1] → L2[0, 1]×R
2 is continuous and linear with

the domain D(L) = H2[0, 1] and the closed range R(L).

Proof. Domain. The operator −u′′ is defined on the whole Sobolev space H2[0, 1].
According to the Sobolev embedding theorem [2], every function u ∈ H2[0, 1] belongs
to C1[0, 1]. Thus, conditions (2) are defined for every u ∈ H2[0, 1]. It means that the
operator L is defined on the whole H2[0, 1].

Linearity. It is obvious that the operator L is linear, since the differential opera-
tor (1) and nonlocal conditions (2) are linear with respect to u.

Continuity. From the triangle inequality, we have ‖Lu‖2 = ‖u′′‖2L2[0,1]
+ |u(0)|2 +

|u′(1) − γu(ξ)|2 6 C · ‖u‖2H2[0,1], since ‖u‖L2[0,1] 6 ‖u‖H2[0,1] and the Sobolev em-

bedding theorem says that for all u ∈ H2[0, 1] there exist such particular positive
constants L1 and L2 that

|u(0)| 6 max
x∈[0,1]

|u(x)| 6 ‖u‖C1[0,1] 6 L1‖u‖H2[0,1],

|u′(1)− γu(ξ)| 6 |u′(1)|+ |γ| · |u(ξ)| 6 (1 + |γ|)‖u‖C1[0,1] 6 L2‖u‖H2[0,1].

Precisely, we obtain the estimate ‖Lu‖ =
(
1 + L2

1 + L2
2

) 1

2 ‖u‖H2[0,1] 6 C‖u‖H2[0,1]

for C = 1 + L1 + L2 and all u ∈ H2[0, 1], which means that the linear operator L is
continuous.

Closeness. Finally, we consider the consistent problem (4). The equation −u′′ = f
has the general solution

u = c1 + c2x+

∫ 1

0

G(x, y)f(y) dy, c1, c2 ∈ R.

Substituting this general solution to nonlocal conditions, we obtain c1 = g1 and

(1− γξ)c2 = γg1 + γ

∫ ξ

0

yf(y) dy + γξ

∫ 1

ξ

f(y) dy + g2.

If γξ 6= 1, then we solve c2 uniquely and obtain the unique solution to the problem
(4) with every right hand side (f, g1, g2) ∈ L2[0, 1] × R

2. It means that the range
R(L) = L2[0, 1]× R

2 is coincident with the whole space and, so, is closed. If γξ = 1,

we solve g2 = −γg1 − γ
∫ ξ

0
yf(y) dy−

∫ 1

ξ
f(y) dy and obtain the representation of the

range

R(L) =

{
(f, g1,−γg1 − γ

∫ ξ

0

yf(y) dy −

∫ 1

ξ

f(y) dy)⊤
}

(5)

for every f ∈ L2[0, 1], g1 ∈ R. Now we take the sequence fn = (fn, g1n,−γg1n −

γ
∫ ξ

0
yfn(y) dy−

∫ 1

ξ
fn(y) dy)

⊤ ∈ R(L), which converges in the space L2[0, 1]×R
2, say,

to f = (f, g1, g2)
⊤ ∈ L2[0, 1]×R

2. Does this limit belong to R(L)? From the extended
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form of the limit ‖fn − f‖L2[0,1]×R2 → 0, if n → ∞, we get ‖fn − f‖L2[0,1] → 0,

g1n → g1 and −γg1n − γ
∫ ξ

0
yfn(y) dy −

∫ 1

ξ
fn(y) dy → g2. Moreover, we obtain

|γg1 + γ

∫ ξ

0

yf(y) dy +

∫ 1

ξ

f(y) dy − γg1n − γ

∫ ξ

0

yfn(y) dy −

∫ 1

ξ

fn(y) dy|

6 γ|g1n − g1|+ γ

∫ ξ

0

|y(f(y)− fn(y))|+

∫ 1

ξ

|f(y)− fn(y)|dy

6 γ|g1n − g1|+ γ‖f − fn‖L2[0,1] + ‖f − fn‖L2[0,1] → 0,

if n → ∞. Since the limit is unique, we obtain g2 = −γg1−γ
∫ ξ

0
yf(y) dy−

∫ 1

ξ
f(y) dy,

what means that (f, g1, g2)
⊤ ∈ R(L). ⊓⊔

According to [1], the properties of the operator L, collected in Theorem 1, are suf-
ficient to exist functions ug ∈ H2[0, 1], those minimize the residual of the problem (4)

‖Lug − f‖L2[0,1]×R2 = min
u∈H2[0,1]

‖Lu− f‖L2[0,1]×R2 .

Among all those minimizers, there also exists the unique function uo of the minimum
norm, i.e. ‖uo‖H2[0,1] < ‖ug‖H2[0,1] for all ug 6= uo. The minimizer uo is often called
the minimum norm least squares solution.

Theorem 2 The problem (4) always has the minimizer uo = L†f , where L† :
L2[0, 1]× R

2 → H2[0, 1] is the Moore–Penrose inverse of the operator L.

Proof. It follows from Theorem 1. Precisely, L is the continuous linear operator
with D(L) = H2[0, 1] and the closed range. Then according to [1], it has the Moore-
Penrose inverse L†, which represents the minimizer by uo = L†f . ⊓⊔

Since the residual of the consistent problem (1)–(2) is equal to zero, then from the
proof of Theorem 1, the general solution to the consistent problem

ug = g1 + cx+

∫ 1

0

G(x, y)f(y) dy, c ∈ R,

represents all minimizers of the problem with the trivial residual. Minimizing its
H2[0, 1] norm or calculating PN(L)⊥u

g [1], we obtain the minimum norm least squares
solution

uo = g1 + cox+

∫ 1

0

G(x, y)f(y) dy, (6)

where co = − 3
8g1 −

3
4

∫ 1

0

(
x
∫ 1

0
G(x, y)f(y) dy +

∫ 1

x
f(y) dy

)
dx.

How to represent the minimizer to the inconsistent problem, which has no solu-
tions? First, we need to discuss about the discretized problem and its minimizer.
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2 The discrete minimizer

Now we introduce the mesh ωh := {xi = ih, nh = 1, i = 0, 1, . . . , n} for n ∈ N and
suppose ξ is coincident with the mesh point, i.e. ξ = sh for s ∈ {1, 2, . . . , n − 2}.
Then we discretize the problem (1)–(2) as follows

−
ui+1 − 2ui + ui−1

h2
= fi, i = 1, n− 1, (7)

u0 = g1,
un − un−1

h
= γus + g2, (8)

which can be rewritten in the equivalent matrix form Au = b for the matrix A ∈
R

(n+1)×(n+1) and the right hand side b = (f1, f2, . . . , fn−1, g1, g2)
⊤ ∈ R

(n+1)×1, where
we can take fi = f(xi) if f ∈ C[0, 1]. For every u, b ∈ R

(n+1)×1 introducing two
discrete norms

‖u‖H2(ωh) =

(
n∑

i=0

u2
ih+

n∑

i=1

(
ui − ui−1

h

)2

h+

n−1∑

i=1

(
ui+1 − ui + ui−1

h2

)2

h

)1/2

,

‖b‖L2(ωh)×R2 =

(
n−2∑

i=0

b2ih+ |bn−1|
2 + |bn−2|

2

)1/2

we consider the operator A : H2(ωh) → L2(ωh)×R
2. According to [1], there exists its

Moore-Penrose inverse A
† : L2(ωh)× R

2 → H2(ωh), which represents the minimizer
u
o = A

†
b ∈ R

(n+1)×1 of the discretized problem (7)–(8).

3 Minimizer of the inconsistent problem

Theorem 3 The minimizer uo of the differential problem (1)–(2) is equal to the
minimizer of the consistent problem

Lu = f −
(v,f)

‖v‖2
v, (9)

where

v(x) =

({
γx, x 6 ξ,
1, x > ξ,

γ, 1

)⊤

∈ R(L)⊥. (10)

Remark 1. If the problem (4) is consistent, i.e. f ∈ R(L), then (v,f) = 0 and we
obtain the same consistent problem (4).

Proof. Let us consider the problem (1)–(2) with γξ = 1. The minimizer uo to
the problem Lu = f is the minimizer to the consistent problem Lu = PR(L)f [1].
Thus, uo is the exact solution to this consistent problem. Similarly, the minimizer
u
o of the discretized problem Au = b is the minimizer to the consistent problem

Au = PR(A)b. We obtain the general solution to the discrete consistent problem

uh,g
i = g1 + cxi +

n−2∑

j=0

Gijbjh, c ∈ R, (11)

Liet. matem. rink. Proc. LMS, Ser. A, 58, 2017, 28–33.
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where

Gij =

{
xj+1, j 6 i,
xi, j > i

is the discrete Green’s function to the problem (7)–(8) with γ = 0 [4]. For simplicity,
we suppose f ∈ C[0, 1], take fi = f(xi) and f = (f(x0), f(x1), . . . , f(xn−2)). Substi-

tuting (11) into (8), we get the representation g2 = −γg1−γ
∑s

i=1 xifih−
∑n−1

i=s+1 fih,

which can be rewritten as follows g2 = −γg1− γ
∫ ξ

0
xf(x) dx−

∫ 1

ξ
f(x) dx+O(h). So,

now the range of the discrete problem is given by

R(A) =

{(
f , g1,−γg1 − γ

s∑

i=1

xif(xi)h−

n−1∑

i=s+1

f(xi)h

)⊤}
,

which, as we observe, represents the discretization of (5). Precisely, if b ∈ R(A),

then b = f
h + O, where f

h = (f , g1,−γg1 − γ
∫ ξ

0 xf(x) dx −
∫ 1

ξ f(x) dx)⊤ is the

discretization of f and Oi = O(h) for i = 0, n. In general for b 6∈ R(A), we get

b̃ = PR(A)b = PN(A∗)⊥b = b−PN(A∗)b. According to [3], dimN(A∗) = 1 ant the
nullspace of the adjoint matrix N(A∗) is composed of the one vector

v =

({
γxi+1, i+ 1 6 s,
1, i+ 1 > s,

γ, 1

)⊤

∈ R
(n+1)×1 (i = 0, n− 2),

which converges to the function (10). The limit function v ∈ R(L)⊥, because taking

f ∈ R(L), we get (v,f) = 0. Then PR(A)b = b − v

‖v‖2 (v,b) = f̃
h + O. We can

directly verify that f̃ = f − v
‖v‖2 (v,f) ∈ R(L) for every f ∈ L2[0, 1], since it is of

the corresponding form (5). It means that the problem Lu = f̃ is consistent. This
problem has the minimizer

ũo = L†f̃ = L†

(
f −

v

‖v‖2
(v,f )

)
= L†f −

(v,f)

‖v‖2
L†v = L†f = uo,

which is equal to the minimizer uo of the problem Lu = f , since v ∈ R(L)⊥ =
N(L∗) = N(L†) [1]. ⊓⊔

Since the problem (9) is consistent, its minimizer is of the corresponding form (6).
Then expanding the right hand side of (9) and substituting

g1 − γ
(v,f )

‖v‖2
and f(x)−

(v,f)

‖v‖2

{
γx, x 6 ξ,
1, x > ξ

instead of g1 and f(x), respectively, in (6), we obtain the representation of the min-
imizer uo for the (in)consistent problem (1)–(2). The obtained representation of uo

simplifies to (6) if the problem (4) is consistent, because (v,f) = 0. The residual of
the problem (1)–(2) is equal to r(u) := Lu− f . So,

r(uo) = Luo − f = f −
(v,f)

‖v‖2
v − f = −

(v,f)

‖v‖2
v, ‖r(uo)‖L2[0,1]×R2 =

|(v,f)|

‖v‖
.
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Example. Let us now consider the particular problem (1)–(2) with f(x) = 0, x ∈ [0, 1],
g1 = 0, g2 = 1, γ = 2 and ξ = 1/2. We can easily verify that this problem has no
solutions and find the least minimizer uo of the residual. Let us note that the residual
‖r(uo)‖ 6 ‖r(x)‖ = 1. First, we calculate the right hand side of the consistent
problem (9)

f̃ = f −
(v,f)

‖v‖2
v = −

1

17

({
6x, x 6 1/2,
3, x > 1/2

, 6,−14

)⊤

.

Substituting the first two components instead of f(x) and g1 into (6), we get the
minimizer

uo = −
6

17
+

3 · 1959

8 · 17 · 640
x+

1

8 · 17

{
8x3 − 18x, x 6 1/2,
12x2 − 24x+ 1, x > 1/2.

As we predicted the norm of the minimal residual ‖r(uo)‖ =
√
3/17 is less than the

residual with the function x, i.e. ‖r(x)‖ = 1. We can easily verify that the obtained
uo ∈ H2[0, 1].
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REZIUMĖ

Antrosios eilės diferencialinio uždavinio su viena nelokaliąja sąlyga minimalusis
sprendinys
G. Paukštaitė ir A. Štikonas

Šiame darbe nagrinėsime antrosios eilės diferencialinio uždavinio su viena pradine ir kita nelokaliąja
sąlygomis netiktį minimizuojančią funkciją. Gausime šios minimizuojančios funkcijos išraišką ir
pateiksime pavyzdį.

Raktiniai žodžiai: nelokalios sąlygos, mažiausi kvadratai, Moore–Penrose atvirkštinis atvaizdis, min-
imizuojanti funkcija
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