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Introduction

We analyse rational Bézier curves with quaternion control points and weights, called
quaternionic–Bézier (QB) curves. This class of curves has two remarkable properties:

• a QB-curve of degree n can be converted to the classical rational Bézier curve
of degree 2n;

• QB-curves are invariant with respect to Möbius transformations.

The QB-curves of degree one are circles. They were discussed in [6]. Quadratic
QB-curves were described in [7, 3]. However, this description is not convenient, be-
cause the middle control may be in 4-dimensional space and is not clear how to use
this point in practise for modelling purposes. In this paper we give two interpolation
constructions for quadratic QB-curves:

– the interpolation curve through five points in R3,

– the interpolation curve through three points with prescribed tangent vectors at
the endpoints.

We use the idea of Anton Gfrerrer [1] to construct a curve for the interpolation
method on the hyperquadric. In order to use this we notice the one-to-one corre-
spondence between quaternionic curves and the curves on Study quadric in R

8 (see
also [4]). On the another hand, points on the Study quadric can be represented as
the displacements in R3, while curves on the Study quadrics mean the motion in R3.
Therefore, QB-curves could be important in kinematics applications (see [2, 4]).

1 Notations and definitions

Let us denote by R, C, H the set of real numbers, complex numbers and quaternion
numbers respectively. The quaternions H can be identified with R4

H =
{

q = [r, p]
∣

∣ r ∈ R, p ∈ R
3
}

= R
4,
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where r = Re(q), p = Im(q) denote real and imaginary parts of a quaternion q = [r, p].
The multiplication in the algebra H is defined by the formula

[r1, p1][r2, p2] = [r1r2 − p1 · p2, r1p2 + r2p1 + p1 × p2],

where p1 · p2, p1 × p2 are scalar and vector products in R3. Let q̄ = [r,−p] means

the conjugate quaternion, and |q| =
√

r2 + p · p =
√
qq̄ denotes the length of the

quaternion. The multiplicative inverse of q is q−1 = q̄/|q|2 = [r/|q|2,−p/|q|2], i.e.
qq−1 = q−1q = 1. We identify the set of pure imaginary quaternions with R3:
Im(H) = {[0, p] | p ∈ R

3} = R
3.

2 The Study quadric and QB-curves

We consider a pair of quaternions (p; q) ∈ H × H = R8 as a point in the projective
space P

7. The Study quadric SQ is a hypersurface in P
7 defined by the equation

pq̄ + qp̄ = 0. Explicitly, let p = [p1, . . . , p4], q = [q1, . . . , q4] be two quaternions then

the equation of the Study quadric is
∑

4

1
piqi = 0:

SQ :=
{

(p; q) = (p1, p2, p3, p4; q1, q2, q3, q4) | p1q1 + p2q2 + p3q3 + p4q4 = 0
}

.

Geometrically, (p; q) ∈ SQ if and only if the vector p is orthogonal to the vector q in
the Euclidean sense. The point on the Study quadric c = (p; q) ∈ SQ defines a point
in R3:

Π : (p; q) → q p−1 ∈ Im(H) = R
3,

because Re(q p−1) = Re(q p̄/pp̄) =
∑4

1
qipi/pp̄ = 0.

An important application of the Study quadric is modelling of rigid body displace-
ments. A dual quaternion c = (p; q) ∈ SQ acts on the quaternion x = [0, x1, x2, x3]
by the formula

c : x → pxp̄+ pq̄ − qp̄

pp̄
=

pxp̄− 2qp̄

pp̄
= (px− 2q)p−1.

The first part of the above formula pxp−1 means rotation while the second means
translation, therefore this action is an element of SE(3), the group of rigid body
displacement (see for details [2]).

The rational quaternionic curve c(t) can be defined as:

c(t) = q(t)p(t)−1, where q(t), p(t) ∈ H[t] are quaternion polynomials.

For applications it is important to describe curves in three dimensional space. We
observe that

c(t) = q(t)p(t)−1 ∈ Im(H) = R
3 if and only if (p(t); q(t)) ∈ SQ, i.e.

a rational QB–curve in 3D is the same as a curve on the Study quadric.
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3 Interpolation construction for QB–curves

Rational quadratic quaternionic–Bézier curves were considered in [7]. Our interpola-
tion construction of the QB–curve was inspired by the idea A. Gfrerrer (see [1]) of
interpolation points on the Study quadric. The arbitrary point c = (p; q) ∈ SQ can
be presented in the homogeneous form

c = (p; q) =
(

pq−1q; q
)

= (a0w0; w0), where a0 = pq−1 ∈ Im(H) = R
3, w0 = q,

which we interpret as the point a0 in R
3 with a quaternion weight w0.

Let n > 1 be an integer, and let T = [t0, . . . , tn] be n + 1 pairwise different real
parameter values. Then we define polynomials of degree n

fi(t) =
∏

k 6=i

(t− tk), with the following properties

fi(ti) 6= 0, fi(tj) = 0, if j 6= i.

Let us fix n+1 homogeneous points (a2iw2i; w2i), i = 0, . . . , n and define quater-
nionic polynomials

q(t) =

n
∑

i=0

a2iw2i fi(t), p(t) =

n
∑

i=0

w2i fi(t), C(t) = q(t) p(t)−1. (1)

We are going to find conditions when the curve C(t) = q(t)p(t)−1 is in Im(H). First
of all we note, that

C(ti) = a2i ∈ Im(H) = R
3, i = 0, 1, . . . , n,

for arbitrary weights wi, i = 0, 1, . . . , n (because fj(ti) = 0, j 6= i). Let S =
[s1, . . . , sn] be different (from the set T ) real parameters (i.e. S ∩ T = ∅) and
a2j−1 ∈ Im(H), j = 1, . . . , n be some points in R3. We consider the linear system

C(sj) = a2j−1, j = 1, . . . , n.

This linear system is equivalent to q(sj) = a2j−1 p(sj), j = 1, . . . , n, i.e.

n
∑

i=0

a2i w2i fi(sj) =

n
∑

i=0

a2j−1 w2i fi(sj), j = 1, . . . , n, or explicitly,

n
∑

i=1

(a2i − a2j−1) fi(sj)w2i = (a2j−1 − a0) f0(sj)w0, j = 1, . . . , n. (2)

The quaternion linear system (2) with n equations and n unknowns w2, w4, . . . , w2n

has a unique solution if the corresponding matrix A = (αij) is not singular.

Theorem 1. Assume the matrix αij = (a2i − a2j−1) fi(sj), i, j = 1, . . . , n, is non-

singular (or invertible). Then there are unique (up to left multiplication) weights

w2i, i = 0, . . . , n, such that the rational curve C(t) defined by the formula (1) is in

Im(H) = R3. Moreover, the curve C(t) interpolates points ai, i = 0, . . . , 2n; actually

C(ti) = a2i, i = 0, . . . , n, and C(si) = a2i−1, i = 1, . . . , n.

Liet. matem. rink. Proc. LMS, Ser. A, 59, 2018, 13–18.
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Proof. The non-singular quaternion matrix A has an LU-decomposition [5, Theo-
rem 3.1]. There exists a decomposition PA = LU and the matrix A is invertible
A−1 = U−1L−1P . Therefore, the system (2) has a unique solution for the weights
w2, w4, . . . , w2n. We can take w0 = 1 and construct the curve C(t). This curve is in
R3 for the set T ∪ S of cardinality 2n+ 1. Hence, according to Lemma 1 below, the
curve C(t) is in R3. ⊓⊔

Lemma 1. The rational curve C(t) = q(t)p(t)−1 is an imaginary quaternion for all

parameters t if and only if Re(C(βi)) = 0 for some real different parameters βi,

i = 0, 1, . . . , 2n.

Proof. We present the rational curve C(t) as follows:

C(t) = q(t)p(t)−1 =
q(t)p̄(t)

p(t)p̄(t)
.

The numerator q(t)p̄(t) is the quaternion polynomial of degree 2n. If Re(C(βi)) = 0
for some real different parameters βi, i = 0, 1, . . . , 2n, then the real polynomial
Re(q(t)p̄(t)) of degree 2n is zero on 2n + 1 different parameter values, i.e.
Re(q(t)p̄(t)) = 0. ⊓⊔

Let us fix
T = [0, 1/2, 1], S = [1/4, 3/4], (3)

and discuss the case n = 2 in greater detail. We choose five different points a0, a1, . . . ,
a4 ∈ R3. Then the linear system (2) multiplied by 16 is

e1 : −3d21w2 − d41w4 = 3d10w0, (4)

e2 : −3d23w2 + 3d43w4 = −d30w0, where dij = ai − aj . (5)

In order to solve it, we eliminate w2 in the equation 3 d−1

41
e1 + d−1

43
e2, and w4 in the

equation d−1

21
e1 − d−1

23
e2. Finally, we get

w2 =
(

− 9d−1

41
d21 − 3d−1

43
d23

)−1(

9d−1

41
d10 − d−1

43
d30

)

w0, (6)

w4 =
(

− d−1

21
d41 − 3d−1

23
d43

)−1(

3d−1

21
d10 + d−1

23
d30

)

w0. (7)

The above formulas for weights are correct if (−9 d−1

41
d21 − 3 d−1

43
d23) 6= 0 and

( − d−1

21
d41 − 3 d−1

23
d43) 6= 0. Both inequalities are equivalent to the inequality

d−1

43
d32 d

−1

21
d14 6= −3. (8)

The expression d−1

43
d32 d

−1

21
d14 is the cross-ratio of four points a4, a3, a2, a1, which is

a real number if and only if these four points are on a circle (see for example [8]).
Geometrically, the inequality (8) means that four points are not circular or they are
circular but the cross-ratio is not equal to −3.

Corollary 1. The interpolation curve C(t) (n = 2) defined by (1) with five points

C(i/4) = ai, ∈ R3, i = 0, 1, . . . , 4, and the weights w2, w4 as in formulas (6), (7) is

in Im(H) = R3. The formulas for weights are well defined if the inequality (8) holds,

i.e. points a4, . . . , a1 are not on a circle or they are circular but the cross-ratio is not

equal to −3.
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For applications it is also important to know tangent vectors. Let C′(t0) be the
tangent vector at the starting point a0 and C′(tn) – the tangent vector at the end
point a4 of the curve. If we replace two conditions C(si) = a2i−1, i = 1, 2, with the
conditions C′(t0) = v0 ∈ Im(H), C′(tn) = v1 ∈ Im(H) we obtain the linear system

f ′
1
(t0) d20 w2 + f ′

2
(t0) d40 w4 = f0(t0) v0 w0,

f ′
1(tn) d24 w2 − f2(tn) v1 w4 = f ′

0(tn) d40 w0.

Eliminating w2, w4 we get the following solution

w2 =
(

− 2 d−1

40
d20 − 2 v−1

1
d24

)−1 (

d−1

40
v0 − v−1

1
d40

)

w0, (9)

w4 =
(

− 2 d−1

20
d40 − 2 d−1

24
v1

)−1 (

2 d−1

20
v0 + 2d−1

24
d40

)

w0. (10)

The above formulas for weights are well defined if

v1 6= −d42d
−1

20
d04. (11)

According to Remark 4.5 in [8] d42d
−1

20
d04 is the tangent vector to the circle c420

through a4, a2, a0 at the point a4. Therefore, the condition (11) means that the
vector v1 is not tangent vector to the circle through the point a4.

Corollary 2. In the case n = 2 the interpolation curve C(t) defined by (1) with three

points C(0) = a0, C(1/2) = a2, C(1) = a4 in R
3 and the weights w2, w4 defined

in formulas (9), (10) is in Im(H) = R3. Moreover, the curve C(t) has the tangent

vectors C′(0) = v0 and C′(1) = v1 in R3 at the points a0 and a4, respectively. The

formulas for weights are well defined if the inequality (11) holds. In particular, if the

vector v1 is not a tangent vector to the circle through a4, a2, a0 at the point a4 then

the weights are well defined by (9) and (10).

We can write the curve C(t) in Bézier form. For this we express

f0 =
1

2
β0 −

1

4
β1, f1 = −1

2
β1, f2 = −1

4
β1 +

1

2
β2,

where quadratic Bernstein polynomials are βi = β2

i (t) =
(

2

i

)

(1− t)2−iti. Let

u0 = w0, u1 = (−1/2)(w0 + 2w2 + w4), u2 = w4,

p0 = a0, p1 = (−1/2)(a0w0 + 2a2w2 + a4w4)(u1)
−1, p2 = a4.

Then the curve C(t) can be presented in the Bézier from with new homogeneous
points (piui, ui)

C(t) =

( 2
∑

i=0

pi ui βi

)( 2
∑

i=0

ui βi

)−1

.

We note that the middle control point p1 usually is not in 3D (see [7]).

Remark 1. If we change the parameter values T, S defined by fromulas (3) the inter-
polation curve C(t) would be different. In fact then formulas for weights (6), (7), (9),
(10) must be recalculated too.

Liet. matem. rink. Proc. LMS, Ser. A, 59, 2018, 13–18.
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REZIUMĖ

Interpoliacijos metodas kvaternioninėms Bézier kreivėms
S. Zubė

Darbe yra aprašytas racionalios kvaternioninės Bézier kreivės interpoliacinis uždavinys. Pagrindinis
dėmesys yra sutelktas į kvaternionines konikes. Gautos sąlygos, kada jos guli trimatėje erdvėje, kas
yra svarbu taikymuose.

Raktiniai žodžiai: kvaternioninės kreivės, interpoliacijos.
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