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Abstract. We study rational quaternionic-Bézier curves in three dimensional space. We
construct the quadratic quaternionic-Bézier curve which interpolates five points, or three
points and two tangent vectors.
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Introduction

We analyse rational Bézier curves with quaternion control points and weights, called
quaternionic—Bézier (QB) curves. This class of curves has two remarkable properties:

e a QB-curve of degree n can be converted to the classical rational Bézier curve
of degree 2n;

e QB-curves are invariant with respect to Mobius transformations.

The QB-curves of degree one are circles. They were discussed in [6]. Quadratic
QB-curves were described in [7, 3]. However, this description is not convenient, be-
cause the middle control may be in 4-dimensional space and is not clear how to use
this point in practise for modelling purposes. In this paper we give two interpolation
constructions for quadratic QB-curves:

— the interpolation curve through five points in R3,

— the interpolation curve through three points with prescribed tangent vectors at
the endpoints.

We use the idea of Anton Gfrerrer [1] to construct a curve for the interpolation
method on the hyperquadric. In order to use this we notice the one-to-one corre-
spondence between quaternionic curves and the curves on Study quadric in R® (see
also [4]). On the another hand, points on the Study quadric can be represented as
the displacements in R?, while curves on the Study quadrics mean the motion in R3.
Therefore, QB-curves could be important in kinematics applications (see [2, 4]).

1 Notations and definitions

Let us denote by R, C, H the set of real numbers, complex numbers and quaternion
numbers respectively. The quaternions H can be identified with R*

H:{q:[r,p]}TGR,pGRB}:R4,
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where r = Re(q), p = Im(q) denote real and imaginary parts of a quaternion q = [r, p].
The multiplication in the algebra H is defined by the formula

[r1,p1][re, 2] = [rir2 — p1 - p2, T1p2 + rep1 + p1 X P2,

where p; - pa, p1 X p2 are scalar and vector products in R3. Let ¢ = [r, —p] means

the conjugate quaternion, and |¢| = \/r?2+p-p = /qq denotes the length of the

quaternion. The multiplicative inverse of ¢ is ¢~ = ¢/|q|* = [r/|q|?, —p/|q|?], i.e.
qq~ ' = ¢ '¢ = 1. We identify the set of pure imaginary quaternions with R3:

Im(H) = {[0,p] | p € R®} = R®.

2 The Study quadric and QB-curves

We consider a pair of quaternions (p;q) € H x H = R® as a point in the projective
space P7. The Study quadric SQ is a hypersurface in P7 defined by the equation
pd + qp = 0. Explicitly, let p = [p1,...,p4], ¢ = [q1,- .., qa] be two quaternions then
the equation of the Study quadric is Z;l pig; = O:

SQ = {(p;q) = (p1.p2. 3. P4 @1, 42, 43, 4a) | Prq1 + P2G2 + P3qs + paqa = 0}.

Geometrically, (p; ¢) € SQ if and only if the vector p is orthogonal to the vector ¢ in
the Euclidean sense. The point on the Study quadric ¢ = (p; ¢) € SQ defines a point
in R3:

IT: (p;q) — qp ' € Im(H) = R?,

because Re(gp~') = Re(qp/pp) = 3.1 4:pi/pp = 0.

An important application of the Study quadric is modelling of rigid body displace-
ments. A dual quaternion ¢ = (p;q) € SQ acts on the quaternion & = [0, 21, x2, x3]
by the formula

) prp+pg—qp _ pxp—2qp
c:xr — — = —

= (pz —2q)p~ .
pp pp

The first part of the above formula pxp~! means rotation while the second means

translation, therefore this action is an element of SE(3), the group of rigid body
displacement (see for details [2]).
The rational quaternionic curve ¢(t) can be defined as:

c(t) = q(t)p(t)~*, where q(t),p(t) € H]t] are quaternion polynomials.

For applications it is important to describe curves in three dimensional space. We
observe that

c(t) = q(t)p(t)~' € Im(H) = R* if and only if (p(t); q(t)) € SQ, i.e.

a rational QB—curve in 3D is the same as a curve on the Study quadric.
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3 Interpolation construction for QB—curves

Rational quadratic quaternionic—Bézier curves were considered in [7]. Our interpola-
tion construction of the QB—curve was inspired by the idea A. Gfrerrer (see [1]) of
interpolation points on the Study quadric. The arbitrary point ¢ = (p;q) € SQ can
be presented in the homogeneous form

c=(p;q) = (pg~'q;q) = (aowo; wo), where ag = pg~* € Im(H) = R?, wy =g,

which we interpret as the point ao in R? with a quaternion weight wy.
Let n > 1 be an integer, and let T' = [to,...,t,] be n + 1 pairwise different real
parameter values. Then we define polynomials of degree n

fit) = H(t —t), with the following properties

ki
fi(t:) # 0, filt;) =0, ifj#i.
Let us fix n + 1 homogeneous points (ag;ws;; wa;), i = 0,...,n and define quater-

nionic polynomials
q(t) = Zam‘ wa; fi(t), p(t) = Zwm‘ fi(t), C(t) = q(t)p(t)~". (1)
i=0 i=0

We are going to find conditions when the curve C(t) = ¢(t)p(t)~! is in Im(H). First
of all we note, that

C(t;) = agy € Im(H) =R3, i=0,1,...,n,

for arbitrary weights w;, ¢ = 0,1,...,n (because f;(t;) = 0,5 # i). Let S =
[s1,-..,5n] be different (from the set T') real parameters (i.e. S NT = () and
agj—1 € Im(H), j = 1,...,n be some points in R3. We consider the linear system

C(Sj):agjfl, ]:1,,71

This linear system is equivalent to ¢(s;) = ag;—1p(s;), 7 =1,...,n, Le.

n n
Z az; wo; fi(s;) = Z asj—1 wy fi(sj), j=1,...,n, or explicitly,
i=0 i=0

n

Z(a&i —azj-1) fi(sj) w2 = (azj—1 — ao) fo(sj)wo, j=1,...,n. (2)

i=1

The quaternion linear system (2) with n equations and n unknowns we, wy, . .., way,
has a unique solution if the corresponding matrix A = («;;) is not singular.

Theorem 1. Assume the matriz o;; = (a2 — asj—1) fi(s;), 4,7 = 1,...,n, is non-
singular (or invertible). Then there are unique (up to left multiplication) weights
wai, © = 0,...,n, such that the rational curve C(t) defined by the formula (1) is in
Im(H) = R3®. Moreover, the curve C(t) interpolates points a;, i = 0,...,2n; actually
C(ti) = a2;, 1= 0,...,7’L, and C(Si) = a2;—1, 1= 1,...,77,.
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Proof. The non-singular quaternion matrix A has an LU-decomposition [5, Theo-
rem 3.1]. There exists a decomposition PA = LU and the matrix A is invertible
A=l = U71L='P. Therefore, the system (2) has a unique solution for the weights
Wa, Wy, . .., Wap. We can take wy = 1 and construct the curve C'(¢). This curve is in
R3 for the set T'U S of cardinality 2n + 1. Hence, according to Lemma 1 below, the
curve C(t) is in R®. O

Lemma 1. The rational curve C(t) = q(t)p(t)~" is an imaginary quaternion for all
parameters t if and only if Re(C(B;)) = 0 for some real different parameters f;,
1=0,1,...,2n.

Proof. We present the rational curve C(t) as follows:

_1_ a)p(t)

C(t) =qt)p(t)~t = — .

0= a0 = o)
The numerator ¢(t)p(t) is the quaternion polynomial of degree 2n. If Re(C(5;)) =0
for some real different parameters 3;, ¢ = 0,1,...,2n, then the real polynomial

Re(q(t)p(t)) of degree 2n is zero on 2n + 1 different parameter values, i.e.
Re(q(t)p(t)) = 0. O
Let us fix
T=1[0,1/2,1], S =1[1/4,3/4], (3)

and discuss the case n = 2 in greater detail. We choose five different points ag, a1, .. .,
as € R3. Then the linear system (2) multiplied by 16 is

e1: —3do1wy — dgywy = 3dyowo, (4)

€9 —3d23w2 + 3d43w4 = 7d30’u}0, where dij = Q5 — Gj. (5)

In order to solve it, we eliminate w, in the equation 3d;11 e1 + dZ31 eo, and wy in the
equation dy,' e; — dyy' 2. Finally, we get

Wo = ( — 9d211d21 — 3dZ31d23)_1 (gdllldlo — d231d30)w0, (6)
wy = (= dy'dar — 3di; ds) ™" (35 dao + day dso ) wo. (7)

The above formulas for weights are correct if (—9 d;ll do1 — 3dZ31 da3) # 0 and
(—dydy —3 dggl d43) # 0. Both inequalities are equivalent to the inequality

dyg dgo dyy' dha # 3. (®)

The expression dggl dso d;ll dy14 is the cross-ratio of four points a4, as, as, a;, which is
a real number if and only if these four points are on a circle (see for example [8]).
Geometrically, the inequality (8) means that four points are not circular or they are
circular but the cross-ratio is not equal to —3.

Corollary 1. The interpolation curve C(t) (n = 2) defined by (1) with five points
C(i/4) = a;, €R3,i=0,1,...,4, and the weights wa, wy as in formulas (6), (7) is
in Im(H) = R3. The formulas for weights are well defined if the inequality (8) holds,
i.e. points ay4,...,a1 are not on a circle or they are circular but the cross-ratio is not
equal to —3.
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For applications it is also important to know tangent vectors. Let C’(ty) be the
tangent vector at the starting point ag and C'(t,) — the tangent vector at the end
point a4 of the curve. If we replace two conditions C(s;) = ag;—1, ¢ = 1,2, with the
conditions C’(tg) = vp € Im(H), C’(t,) = v1 € Im(H) we obtain the linear system

fi(to) dao w2 + f5(to) dao wa = fo(to) vo wo,
Ji(tn) dagwa —  fo(tn) viws = fo(tn) dao wo.
Eliminating ws, wy we get the following solution
_ _ -1, ,_ _
wo = ( -2 d401 d20 — 2’01 1 d24) ( d401 Vo — ’Ul 1 d40) wo, (9)
_ _ -1 _ _
wy = ( -2 d201 dgo — 2 d241 U1 ) ( 2 d201 Vo + 2d241 d40) wg. (10)
The above formulas for weights are well defined if
(% 7& 7d42d2701d04. (11)

According to Remark 4.5 in [8] d42d2_01d04 is the tangent vector to the circle 4o
through a4, as,a¢ at the point ay. Therefore, the condition (11) means that the
vector vy is not tangent vector to the circle through the point ay4.

Corollary 2. In the case n = 2 the interpolation curve C(t) defined by (1) with three
points C(0) = ag, C(1/2) = a2, C(1) = a4 in R® and the weights wa, wy defined
in formulas (9), (10) is in Im(H) = R3. Moreover, the curve C(t) has the tangent
vectors C'(0) = vo and C'(1) = vy in R3 at the points ag and a4, respectively. The
formulas for weights are well defined if the inequality (11) holds. In particular, if the
vector v1 is not a tangent vector to the circle through a4, as, ag at the point aq then

the weights are well defined by (9) and (10).
We can write the curve C(¢) in Bézier form. For this we express

fozlﬂO*iﬂl, le*%ﬂla fo= 151+%ﬂ27

2 4
where quadratic Bernstein polynomials are 3; = 32(t) = (f)(l — )27 Let

ug = wo, ur = (—1/2)(wo + 2wz + wy), Ug = Wy,

po=ao, p1=(—1/2)(aowo + 2asws + a4w4)(u1)_1, p2 = a4.

Then the curve C(t) can be presented in the Bézier from with new homogeneous

points (piu;, u;)
2 2 1
C(t) = (szuz ﬂi) <Zuz ﬂi) .
i=0 i—0

We note that the middle control point p; usually is not in 3D (see [7]).

Remark 1. If we change the parameter values T, S defined by fromulas (3) the inter-
polation curve C(t) would be different. In fact then formulas for weights (6), (7), (9),
(10) must be recalculated too.
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REZIUME
Interpoliacijos metodas kvaternioninéms Bézier kreivéms
S. Zubé

Darbe yra aprasytas racionalios kvaternioninés Bézier kreivés interpoliacinis uzdavinys. Pagrindinis
démesys yra sutelktas j kvaternionines konikes. Gautos salygos, kada jos guli trimatéje erdvéje, kas
yra svarbu taikymuose.

Raktiniai Zodziai: kvaternioninés kreivés, interpoliacijos.
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