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Abstract. We extended the rational Bézier model for space curve, by allowing quaternion
weights. These curves are Möbius invariant and have halved degree with respect to real
Bézier curves. This simplify the analysis of curves. In general, these curves are in four
dimensional space. We analyze when the quadratically parameterized quaternion curve is in
usual three dimensional subspace.
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Introduction

We analyze a rational Bézier curves with quaternion control points and weights. This
class of curves offers two remarkable advantages.

• If the degree of the Bézier quaternion curve is n then the corresponding real
curve have degree 2n. So we need less control points and weights for the quater-
nion curve.

• A quaternion curve is invariant with respect to Möbius transformation.

The quaternion curves can be considered as generalization of Bézier construction
for complex numbers similar to [3]. The quaternion curves of degree one are discussed
in [5]. In this short paper, we restricted to the question: what conditions are necessary
for the quadratic quaternion Bézier curve which guarantee that the curve is in tree-
dimensional space.

An interesting generalization to the surface case is in a paper [2], where bi-linear
quaternion Bézier surface are described. It turn out, that the corresponding surface
is Darboux cyclide. These cyclides contains (in general case) six different families
of circles. This could be useful in architectural freeform circular arc structures and
discreet differential geometry.

1 Notations and definitions

We denote by R, C, H the set of real numbers, complex numbers and quaternion
numbers respectively.

In general, the quaternion set H can be represented as

H =
{

q = [r, p ]
∣

∣ r ∈ R, p ∈ R
3
}

= R
4 (1)
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54 S. Zube

We denote real and imaginary parts of quaternion q = [r, p] by Re(q) = r, Im(q) = p.
The multiplication in the algebra H is defined as

[r1, p1][r2, p2] = [r1r2 − p1 · p2, r1p2 + r2p1 + p1 × p2], (2)

where p1 · p2, p1 × p2 are scalar and vector products in R3. We denote by q̄ = [r,−p]

a conjugate quaternion to q = [r, p], |q| =
√

r2 + p · p =
√
qq̄ is the length of the

quaternion, q−1 = q̄/|q|2 = [r/|q|2,−p/|q|2] denote the multiplicative inverse of q, i.e.
qq−1 = q−1q = 1. Denote the set of pure imaginary quaternions

Im(H) =
{

[0, p ]
∣

∣ p ∈ R
3
}

= R
3. (3)

2 Quaternion rational Bezier curve

We analyze Bézier form curve with quaternion control points ak ∈ H and quaternion
weights wk ∈ H. Formally speaking, we are dealing with a quaternion function in
homogeneous coordinates (akwk, wk) ∈ H2. The quaternion rational Bézier curve is
defined in terms of Bernstein polynomials Bn

k
(t) as customary quotient:

ch(t) = n(t)d(t)−1, where n(t) =

n
∑

k=0

akwkB
n

k (t), d(t) =

n
∑

k=0

wkB
n

k (t), (4)

h =
{

hk = (ak, wk) ∈ H
2, k = 0, . . . , n

}

(5)

Here we consider n(t), d(t) as quaternions, d(t)−1 is an inverse quaternion and
n(t)d(t)−1 is the multiplication of two quaternions. So, in general, we have ch(t) ∈
H = R4. If we multiply the numerator and the denominator by the conjugated
quaternion d̄(t):

ch(t) =
n(t)d̄(t)

d(t)d̄(t)
, (6)

we get a real curve in R4 with a real denominator of degree 2n. Note, that the
denominator is a real positive polynomial.

Remark 1. If we change the weights w0, w1, . . . , wn to 1, w1w
−1

0
, . . . , wnw

−1

0
the pa-

rameterized curve ch(t) is the same. Moreover, if we change the parameter t to
s = ρt/(1 − t + ρt) (ρ ∈ R) and weights w0, w1, . . . , wn to w0, w1/ρ, . . . , wn/ρ

n then
the curve is the same too. In particular, if we take ρ = −1 and s = −t/(1−2t) ∈ [0, 1]
then t = s/(2s− 1) ∈ [0,−∞] ∩ [∞, 1]. Therefor, the union of two curve parts

{

ch(t), t ∈ [0, 1]
}

∪
{

c
ĥ
(s), s ∈ [0, 1]

}

, where (7)

ĥ =
{

ĥk = (ak, (−1)kwk), k = 0, . . . , n
}

(8)

contains all points of the same curve.

A rational Bézier curve c(t) of degree one is a circular arc with two endpoints
a0, a1. This case is well understood (see [5]).

In geometric modeling application we need geometric description of curves in R3

space. The only obvious geometric property is endpoints interpolation, i.e. c(0) = a0,
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Quaternion rational Bézier curves 55

c(1) = an. To find out an interpretation for weights and inner control points we
restricted to quadratic quaternion rational Bézier curve (a real degree of the curve
is 4). We note that these curves are invariant with respect to Möbius transformation.
A general Möbius transformation is defined on H

2:

M(q1, q2) = (aq1 + bq2, cq1 + dq2), where a, b, c, d ∈ H, (9)

or on H as linear fractional function:

M(q) = (aq + b)(cq + d)−1, where a, b, c, d ∈ H. (10)

A Möbius transformation is conformal, i.e. it preserves angles between vectors (see [1]).
Note that arbitrary rational curve is not Möbius invariant. For example, consider a
real rational quartic which is intersection of two at some point A tangent cylinders.
This quartic has singular point A. We can apply inversion with the center on the
point A. Then one can show that the quartic will be transformed to the sextic.
Therefor, this quartic curve can not be obtained as quadratic quaternionic Bézier
curve.

3 Quadratic quaternion Bézier curves

With any quadratic quaternion Bézier curve ch(t), h = {hk = (ak, wk), k = 0, 1, 2}
we associate a linear rational quaternion Bézier surface in R4 = H:

sh(x, y) = (a0w0u+ a1w1x+ a2w2y)(w0u+ w1x+ w2y)
−1, u = 1− x− y. (11)

We note that sh(2t(1− t), t2) = ch(t). We are looking for the condition on the points
and weights which guarantee that the curve ch(t) is in Im(H) = R3. Firstly, the
endpoints a0, a2 should be in R3. If the surface sh(x, y) is in Im(H) = R3 then the
curve ch(t) is in R3 too (the inverse statement is not true).

Proposition 1. Assume that the control points a0, a1, a2 of Bézier curve ch(t) ∈ R3

are in R3 then the corresponding parameterized surface sh(x, y) is a two dimensional

sphere (or a plane) in R3. Therefore, the curve ch(t) is on a sphere (or a plane) too.

Proof. We compute real control points of the curve:

ch(t) = nd−1 =
nd̄

dd̄

=
a0|w0|2(1− t)2 + p012(1− t)3t+ p02(1− t)2t2 + p122(1− t)t3 + a2|w2|2t4
|w0|2(1− t)2 + w012(1− t)3t+ w02(1− t)2t2 + w122(1− t)t3 + |w2|2t4

(12)

where

p01 = a0w0w̄1 + a1w1w̄0, w01 = w0w̄1 + w1w̄0,

p02 = a0w0w̄2 + a2w2w̄0 + 4a1|w1|2, w02 = w0w̄2 + w2w̄0 + 4|w1|2,
p12 = a1w1w̄2 + a2w2w̄1, w12 = w1w̄2 + w2w̄1.

(13)

Liet. mat. rink. LMD darbai, 52:53–58, 2011.
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56 S. Zube

Since the curve ch(t) is in R3 we see that p01, p02, p12, w01, w02, w12 ∈ R3. Similarly,
we can compute real points for the corresponding surface:

sh(x, y) =
a0|w0|2u2 + P01ux+ P02uy + P12xy + a1|w1|2x2 + a2|w2|2y2

|w0|2u2 +W01ux+W02uy +W12xy + |w1|2x2 + |w2|2y2
, (14)

where u = 1− x− y, P01 = p01, P12 = p12, P02 = p02 − 4a1|w1|2. (15)

Since a1 ∈ R3 we see that the surface sh(x, y) is in 3D space too. A curve sh(a +
pt, b+ rt), a, p, b, r ∈ R is a circle because it is a image of a line with a rational linear
map (see for details in [5]). Hence the surface contains an infinite number of circles
through any point on the surface so it must be a sphere (or a plane) (see [4]). ⊓⊔

In general case, the curve ch(t) may be in R3 but the midpoint a1 6∈ R3. The corre-
sponding example we can get using bi-linear quaternion surface bH(s, t) =
n(s, t)d(s, t)−1, where

n(s, t) = b0w0(1− s)(1− t) + b1w1s(1− t) + b2w2(1− s)t+ b3w3st,

d(s, t) = w0(1− s)(1 − t) + w1s(1− t) + w2(1− s)t+ w3st, (16)

H = {hk = (bk, wk) ∈ H
2, k = 0, 1, 2, 3}.

One can find points hk such that the surface bH(s, t) is in R3 (see [2]). The diagonal
quadratic quaternion curve bH(t, t) will be in R3 too. It is known that in general the
surface bH(s, t) is Darboux cyclide of degree 4. In general case, the diagonal curve
bH(t, t) will be not on the sphere, so the corresponding midpoint of this curve is not
in R3. The natural question that arises is whether the quaternion quadratic Bézier
curve in R3 exist if a1 6∈ R3. The answer is affirmative:

Proposition 2. Let a0, a2, v0, v2 ∈ Im(H) = R3, a1 ∈ H \ Im(H). We set

u0 = 1, w1 = (a1 − a0)
−1v0u0/2, w2 = 2v−1

2
(a2 − a1)w1 and

h =
{

(ak, wk), k = 0, 1, 2
}

, where w0 = Re
(

− 4a1|w1|2
)

/Re(a0w̄2 + a2w2)
(17)

Then ch(t) ∈ Im(H) = R3 with the following derivatives at the end points c′
h
(0) =

w0v0, c′
h
(1) = v2.

Proof. First of all, we compute derivatives of the quadratic Bézier curve c = ch(t)
at the end points. Since c = nd−1 we take derivative of both sides for the equality
cd = n and obtain c′ = (n′ − cd′)d−1. Hence

c′h(0) = 2(a1 − a0)w1w
−1

0
, c′h(1) = 2(a2 − a1)w1w

−1

2
. (18)

Now, we consider a quaternion curve C(t) such that C′(0) = v0 and C′(1) = v2.
Using the above equalities, for the curve C(t) we can take weights as follows u0 = 1,
w1 = (a1 − a0)

−1v0u0/2, w2 = 2v−1

2
(a2 − a1)w1. In order to obtain the curve in R3

we will replace the weight u0 with some real constant. Since ch(t) ∈ Im(H) we have
p01, p02, p12 ∈ Im(H) (see formulas (13)). Note that p01 − a0 is a tangent vector to
the curve ch(t) at the point a0 hence p01 ∈ Im(H) because v0 ∈ Im(H). Similarly, we
see that p12 ∈ Im(H). Now if we set w0 = Re(−4a1|w1|2)/Re(a0w̄2 + a2w2) we see
that Re(p02) = 0, i.e. p02 ∈ Im(H) and ch(t) ∈ Im(H) too. ⊓⊔



i

i

“LMD11geo_zube” — 2011/11/25 — 14:29 — page 57 — #5
i

i

i

i

i

i

Quaternion rational Bézier curves 57

Fig. 1. Viviani’s curve on a sphere presented as two Bézier curves: ch(t) ∪ c
ĥ
(s).

The next proposition show that any quadratic quaternion curve is a diagonal curve
on a bi-linear surface, i.e. any Möbius invariant curve is on a Möbius invariant surface.

Proposition 3. Any quadratic quaternion curve ch(t), h = {(ak, wk), k = 0, 1, 2} can

be represented (not uniquely) as a diagonal curve bH(t, t), where H = {(bk, uk), k =
0, 1, 2, 3}. Moreover, if ch(t) ∈ Im(H) then bH(t, s) ∈ Im(H).

Sketch of proof. Since bH(t, t) = ch(t) we have b0 = a0, b3 = a2. Let us take u0 = w0,
u3 = w2 and choose any b1, u1 ∈ H then we compute u2, b2 by the formulas

u2 = 2w1 − u1, b2 = (2a1w1 − b1u1)u
−1

2
. (19)

We can verify that bH(t, t) = ch(t). Now we suppose ch(t) ∈ Im(H). We would
like bH(t, s) ∈ Im(H) too. Let u1 = λu0, λ ∈ R and take b1 ∈ Im(H) such that
(b1 − b3)u1u

−1

3
∈ Im(H). Then we compute u2, b2 by the formulas (19). It is easy to

see that Re(b2) is linear function in λ. Let us take λ such that Re(b2)(λ) = 0 then
one can check that bH(t, s) ∈ Im(H). ⊓⊔

3.1 Viviani’s type of the space curve

Viviani’s curve is a space curve named after the Italian mathematician Vincenzo
Viviani, the intersection of a sphere with a cylinder that is tangent both to the sphere
and its center. We can generalized this definition and say that intersection of a sphere
with any tangent quadric is Viviani’s type of a space quartic on the sphere. This curve
is rational because after stereographic projection from singular point to a plane we
get a conic. Moreover, any rational quartic on the sphere must be singular hence it
is of Viviani’s type. This quartic we can parameterized using quadratic quaternion
Bézier curve. Firstly, we parameterize a sphere. We take arbitrary a0, a1, a1, v0 ∈ R

3

then set w0 = 1, w1 = (a1 − a0)
−1v0, w2 = (a2 − a1)

−1(a1 − a0) and h = {hk =
(ak, wk), k = 0, 1, 2}. One can check that sh(x, y) ∈ R3 is the unique sphere which
contains three points a0, a1, a2 and v0 is a tangent vector to the sphere at the point
a0. Also the Bézier curve ch(t) is on this sphere. Moreover, ch(1/2) = a1 is a singular
point of the curve ch(t). Indeed,

ch(1/2)− a1 = (a0 + 2a1w1 + a2w2)(1 + 2w1 + w2)
−1 − a1

= (a0 − a1 + (a2 − a1)w2)(1 + 2w1 + w2)
−1 = 0. (20)

Liet. mat. rink. LMD darbai, 52:53–58, 2011.
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58 S. Zube

The full curve can be presented as two Bézier curves ch(t)∪ c
ĥ
(s) as explained in the

Remark 1.

References

[1] J. Hanson. Quaternion Möbius transforms. https://faculty.digipen.edu/˜ jhanson/
geometry/moebius/moebius.pdf.

[2] R. Krasauskas and S. Zube. Bezier-like parametrizations of spheres and cyclides using
geometric algebra. In K. Guerlebeck(Ed.), Proceedings of 9th International Conference

on Clifford Algebras and their Applications in Mathematical Physics, Weimar, Germany,

15-20 July 2011, to appear.

[3] J. Sanchez-Reyes. Complex rational bezier curves. CAGD, 36:865–876, 2009.

[4] N. Takeuchi. A closed surface of genus one cannot have seven circles through each point.
Proc. Amer. Math. Soc., 100(1):145–147, 1987.

[5] S. Zube. A circle represenatation using complex and quaternion numbers. Lith. J. Math.,
46(2):298–310, 2006.

REZIUMĖ

Kvaternioninės racionalios Bézier kreivės

Severinas Zubė

Darbe yra apibrėžiamos kvaternioninės racionalios Bézier kreivės. Kadangi kontroliniai taškai yra
bet kokie kvaternionai, tai kreivės patenka į keturmatę erdvę. Taikymuose dažniausiai yra reikalin-
gos kreivės trimatėje erdvėje. Darbe pagrindinis dėmesys yra sutelktas į kvartikas. Nagrinėjamas
klausimas, kad jos guli trimatėje erdvėje.

Raktiniai žodžiai: Bézier kreivės, kvaternionai.
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