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Abstract. A well-known example of global optimization that provides solutions within
fixed error limits is optimization of functions with a known Lipschitz constant. In many
real-life problems this constant is unknown.

To address that, we propose a novel method called Pareto Lipschitzian Optimization
(PLO) that provides solutions within fixed error limits for functions with unknown Lipschitz
constants.In the proposed approach, a set of all unknown Lipschitz constants is regarded as
multiple criteria using the concept of Pareto Optimality (PO).

Keywords: Pareto, Lipschitz, Global optimization.

Introduction

The target of this paper is to discuss the results of experimental calculations. The
theoretical part of PLO is described and some computing results are presented in [6].
The description of the PLO algorithm is in [6], too. We compare PLO to the existing
family of the DIRECT algorithms [3, 1, 2, 4]. The DIRECT algorithms considers only
a small subset of PO decisions that are selected by a heuristic rule depending on an
adjustable parameter. It means that some PO decisions are preferred to others. In
contrast, PLO regards all PO decisions without preferences and is naturally suited to
utilize highly parallel computing.

1 Pareto–Lipschitzian Optimization (PLO)

We start to explain the optimization of Lipschitz functions with unknown constants
by considering this one-dimensional example.

Suppose that the interval D = [a, b] ∈ R is partitioned into intervals [ai, bi],
i = 1, . . . , I of lengths li = bi − ai with midpoints ci = (bi + ai)/2 and the values
of the function fω(x) are known only at the midpoints ci. The unknown Lipschitz
constants ω are regarded as different components of multiple criteria. The variables
x are represented by the intervals ai 6 x 6 bi and the function fω(x) is approximated
by the lower bounds: fω(x) > f(ci)− ωli/2, ai 6 x 6 bi.

http://www.mii.lt/LMR/
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Definition 1. The interval i: ai 6 x 6 bi belonging to a compact set D ∈ R domi-
nates the interval j: aj 6 x 6 bj if

f(ci)− ω li/2 6 f(cj)− ω lj/2 for all ω ∈ Ω, (1)

f(ci)− ω li/2 < f(cj)− ω lj/2, for at least one ω ∈ Ω. (2)

Expressions (1), (2) show that the lower bound of the interval i is increasing with
f(ci) and decreasing with li for all ω.

In [7] the set of Pareto Optimal (PO) intervals is defined as follows:

Definition 2. The interval j: aj 6 z 6 bj belonging to a compact set D ∈ R is called
Pareto Optimal (PO), if there is no dominant interval i defined by (1), (2).

The PLO algorithm is described in [6] using corresponding theorems 1 and 2.

2 Comparison of PLO with the DIRECT algorithm

The DIRECT algorithm [3, 2] for Lipschitzian optimization with unknown constants
is defined as a heuristic without any references to the theory of vector optimization
or Pareto optimality. However, it can be explained in terms of PLO as well. The
basic idea of DIRECT is to select (and sample within) all Potentially Optimal (PTO)
intervals during an iteration. A formal definition of PTO intervals follows.

Definition 3. The interval j is said to be PTO if there exists some rate-of-change
constant ω > 0 such that

f(cj)− ω lj/2 6 f(ci)− ωli/2 for all i = 1, . . . , I, (3)

f(cj)− ω lj/2 6 fmin − ǫ |fmin|. (4)

Here ǫ > 0 is a constant that defines the size of the set of PTO intervals, and fmin is
the current best value.

One can see that inequality (3) includes all the intervals which are among the best
for at least one ω > 0. It means that these intervals are not dominated, thus, they
belong to the PO set as well. However, condition (3) defines only a subset of not
dominated intervals. The further restriction of this part of PO intervals is provided
by condition (4) which depends on the parameter ǫ. Thus the actual performance of
DIRECT algorithm is determined by this parameter.

3 Extension to several dimensions

We define the length li of the interval aki 6 zk 6 bki , k = 1, . . . ,K in a compact subset
D ∈ RK as the longest length: li = maxk l

k
i . where lki = bki − aki , k = 1, . . . ,K. The

observation points ci are in the middle cki = (bki + aki )/2, k = 1, . . . ,K. Then the
definition of PO-intervals remains the same.

3.1 Sampling

The sampling procedure of the PLO algorithm [6] is similar to that of the DIRECT
algorithm [2]. However, the definition of Pareto Optimal intervals, used in PLO, is
different from the definition of Potentially Optimal intervals in the DIRECT algo-
rithm.

Liet. mat. rink. LMD darbai, 52:280–284, 2011.



i

i

“LMD11op.mockus_stas” — 2011/11/28 — 17:25 — page 282 — #3
i

i

i

i

i

i

282 On the experimental investigation of Pareto–Lipschitzian optimization

Table 1. Comparison of three algorithms optimizing real applications.

Function Iterations PLO BA MC

EcoDuel 100 0.077 0.196 0.529
EcoDuel 1000 0.0285 0.0693 0.273
Packer 10 −2.2623 −2.2572 −2.2119
ModelTask 100 4.647 5.638 4.916

3.2 Experimental computing

Some results comparing the sequential version of PLO with other methods are in [6].
These and other calculations can be repeated independently using any of the following
websites:

http://soften.ktu.lt/~mockus,
http://optimum2.mii.lt/,
http://prof.if.ktu.lt/~jonas.mockus,

section ‘Software Systems’, task ‘GMJ4: Global Optimization of many Models with
PloN, nerijus version J2sdk1.6 #1’, start “Applet: gmj5.html”, select method “PloNj”
and the corresponding task, click “Operations” and “Run”.

In this paper, three models that simulates real optimization problems [5] are in-
vestigated. The first one, called “Eco Duel”, in short, is about a differential game
that represents the competition of two servers, using the concept of Nash equilibrium.
Here eight optimization variables are used. The second five-dimensional model opti-
mizes the “mixture” of five heuristics for packing rectangular boxes of different size
into the container and is called “Packer”, in short. The third model “ModelTask”
minimizes the deviation of the neuron gate model from the experimental results [8].

Table 1 illustrates the sample of PLO, BA, and MC comparison. In the all in-
stances PLO was the best. BA was better MC with exception of the “ModelTask”
model.

Figure 1 shows the results of optimal packing of hundred different rectangular
packages into the rectangular container. In this example, both PLO and BA were
used to optimize the mixture of five greedy heuristics, the function was the total
volume of packages in the container.

Table 2 illustrates the comparison the results of Monte Carlo (MC), PLO, DIRECT
obtained using standard test functions of global optimization [3, 1, 4]. MC and PLO
represent methods intended for parallel computing with no adjustable parameters.
The version of DIRECT is for sequential realization with one adjustable parameter ǫ
selected by the method authors. This means that we compare algorithms representing
different families of optimization methods.

DIRECT was better than PLO for 1 test function: Shekel, m=10. For the function
Hartman-3, the results were equal. PLO was better than DIRECT for 5 functions
Hartman-6, Brcos, GolPri, and SixH.

4 Summary

The theoretical novelty of PLO is the definition of the problem of Lipschitzian opti-
mization with unknown Lipschitz constants in terms of Pareto optimality (PO).

http://soften.ktu.lt/~mockus
http://optimum2.mii.lt/
http://prof.if.ktu.lt/~jonas.mockus
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Fig. 1. Results of optimal packing using PLO.

Table 2. Comparison of three algorithms using standard test functions.

Funct Iter MC DIRECT PLO f(x∗)

Shekel, m = 10 97 −1.201 −10.435 −8.54 −10.5364
Hartman-3, 83 −3.564 −3.862 −3.862 −3.86278
Hartman-6, 213 −2.505 −3.321 −3.322 −3.32237
Brcos 63 1.066 0.42 0.401 0.397887
GolPri 101 8.86 3.03 3.00 3.00
SixH 113 −0.82 −1.022 −1.027 −1.031628453
Shub2D 2883 −162.3 −184.73 −172.44 −186.7309

The computational contribution is implementation the Pareto-Lipschitzian Opti-
mization (PLO) algorithm as the Java applet with experimental calculations illus-
trating the PLO efficiency for functions up to 20 variables. We expect that in the
future, the extensive computer simulation with various test and real functions will
reveal additional aspects of the proposed algorithm and that would be an interesting
new investigation.
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REZIUMĖ

Apie eksperimentinį Pareto-Lipšico optimizacijos tyrimą
J. Mockus, J. Stašionis

Optimizavimas funkcijų su žinoma Lipšico konstatnta, užtikrinantis sprendinius duotu tikslumu, yra
žinomas globaliojo optimizavimo uždavinys. Ši konstanta nėra žinoma daugelyje praktinių uždavinių.
Mes tiriam naują metodą tokiems uždaviniams spręsti, pavadintą Pareto-Lipšico optimizacija (PLO).
Šis metodas pateikia sprendinius duotu tikslumu funkcijoms su nežinoma Lipšico konstanta. PLO
požiūriu, Lipšico konstantos nagrinėjamos kaip vektorinio kriterijaus elementai Pareto optimalumo
teorijos rėmuose.

Raktiniai žodžiai: Pareto optimalumas, Lipšicas, globaliojo optimizavimo uždaviniai.
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