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Abstract. We consider an Edgeworth type approximation to the distribution function of
sample median in the case of stratified samples drawn without replacement. We give explicit
expression of this approximation, and also its empirical version based on bootstrap. We
compare their accuracy with that of the normal approximation by numerical examples.
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Edgeworth expansion, bootstrap.

1 Introduction and results

Consider a population X = {x1, . . . , xN} of size N . We assume without loss of
generality that x1 6 · · · 6 xN . Let X be divided into h > 1 nonoverlapping strata
X = X1∪· · ·∪Xh, where Xk = {xk,1, . . . , xk,Nk

}. Clearly, N = N1+· · ·+Nh. Here, for
convenience, we will also assume that xk,1 6 · · · 6 xk,Nk

. Let Xk = {Xk,1, . . . , Xk,nk
}

be the simple random sample of size nk < Nk drawn without replacement from
the stratum Xk. We assume that the samples X1, . . . ,Xh are independent. Write
X = X1 ∪ · · · ∪Xh and denote n = n1 + · · ·+ nh. Denote the distribution function of
the stratum k and its empirical analogue by

FN,k(x) =
1

Nk

Nk
∑

i=1

I{xk,i 6 x} and Fn,k(x) =
1

nk

nk
∑

i=1

I{Xk,i 6 x}

respectively. Here I{·} is the indicator function. Then the distribution function of
the population X and its estimator are

FN (x) =

h
∑

k=1

Nk

N
FN,k(x) and Fn(x) =

h
∑

k=1

Nk

N
Fn,k(x)

respectively. Consider the population median defined as follows F−1
N (0.5) = inf{x:

FN (x) > 0.5}. Define its estimator

Xmed = F−1
n (0.5) = inf

{

x: Fn(x) > 0.5
}

.
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Denote σ2 = VarXmed. In the present paper we are interested in approximations
to the distribution function Fmed(x) = P{Xmed − EXmed 6 xσ}. The asymptotic
normality of median Xmed under stratified simple random sampling (STSRS) without
replacement was considered in [4, 5]. Here we present an Edgeworth expansion for
Fmed(·) and its empirical analogue. Our approach is based on Hoeffding’s (orthogonal)
decomposition Xmed = EXmed + L+Q+R constructed in [1] for general symmetric
statistics based on STSRS samples drawn without replacement. Here L and Q are
called linear and quadratic parts of the decomposition, and R is a remainder term.
In the case of U -statistics, where R ≡ 0, Edgeworth expansions were constructed and
their second-order correctness was shown in [2]. Thus we expect that, if R is negligible,
those Edgeworth expansions will also approximate Fmed(·) well. In particular, we
propose to approximate Fmed(·) by

G(x) = Φ(x) −
α+ 3κ

6σ3
Φ′(x)

(

x2 − 1
)

, (1)

obtained in [2]. Here Φ′(x) denotes the derivative of the standard normal distribution
function Φ(x), and

α =

h
∑

k=1

(1− 2nk/Nk)τ
2
kαk and κ =

h
∑

k=1

τ4kκkk + 2
∑

16k<u6h

τ2k τ
2
uκku, (2)

with τ2k = nk(1 − nk/Nk). Here the moments

αk =
1

Nk

Nk
∑

s=1

g3k(xk,s), κkk =
1
(

Nk

2

)

∑

16s<r6Nk

ψk(xk,s, xk,r)gk(xk,s)gk(xk,r),

κku =
1

NkNu

∑

16s6Nk, 16r6Nu

ψku(xk,s, xu,r)gk(xk,s)gu(xu,r),

established in [2], are based on the functions

gk(xk,s) =
Nk − 1

Nk − nk

N−1
∑

i=1

(pi(xk,s)− pi) △i, (3)

ψk(xk,s, xk,r) =
Nk − 2

Nk − nk

Nk − 3

Nk − nk − 1

N−1
∑

i=1

×

(

pi(xk,s, xk,r)−
Nk − 1

Nk − 2

(

pi(xk,s) + pi(xk,r)
)

+
Nk

Nk − 2
pi

)

△i,

(4)

ψku(xk,s, xu,r) =
Nk − 1

Nk − nk

Nu − 1

Nu − nu

×

N−1
∑

i=1

(

pi(xk,s, xu,r)− pi(xk,s)− pi(xu,r) + pi
)

△i, (5)
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where for 1 6 i 6 N − 1 we write △i= xi+1 − xi, and denote the probabilities

pi = P{Xmed > xi}, pi(xk,s) = P{Xmed > xi | Xk,1 = xk,s},

pi(xk,s, xk,r) = P{Xmed > xi | Xk,1 = xk,s, Xk,2 = xk,r},

pi(xk,s, xu,r) = P{Xmed > xi | Xk,1 = xk,s, Xu,1 = xu,r}.

We give these probabilities in (6) and in Proposition 1 below. Note that expressions
(3)–(5) are obtained directly from (11) in [1], using the definitions of expectation and

conditional expectations, and applying summation by parts formula
∑N

i=1(pi−1 −

pi)xi = −pNxN + p0x1 +
∑N−1

i=1 pi △i (in the case of expectation) and noting that,
by definition, pN = 0 and p0 = 1, and so forth.

Let T be the set of h-tuples (t1, . . . , th) ∈ {0, . . . , n1} × · · · × {0, . . . , nh}, which

satisfy the condition
∑h

j=1 wjtj < 0.5. Here wj = Nj/(Nnj). Denote HN,n,i(j) =
(

i
j

)(

N−i
n−j

)

/
(

N
n

)

the probability that a hypergeometric random variable with parame-

ters N , n and i attains the value j. Denote dij := NjFN,j(xi). In [4] is shown that
for 0 6 i 6 N ,

pi =
∑

T

∏

16j6h

HNj,nj ,dij
(tj), (6)

and then the variance of Xmed in (1) is

σ2 =

N
∑

i=1

(pi−1 − pi)x
2
i −

(

N
∑

i=1

(pi−1 − pi)xi

)2

. (7)

Next we give explicit expressions of the conditional probabilities.

Proposition 1. Let 1 6 i 6 N − 1.

(i) For 1 6 k 6 h and 1 6 s 6 Nk we have

pi(xk,s) =
∑

T

ϕi(k, s)
∏

16j6h, j 6=k

HNj ,nj ,dij
(tj),

where

ϕi(k, s) =

{

HNk−1,nk−1,dik
(tk) if i ∈ I21,

HNk−1,nk−1,dik−1(tk − 1) if i ∈ I22,

with

I21 = {i: xi < xk,s}, I22 = {i: xi > xk,s}.

(ii) For 1 6 k 6 h and 1 6 s < r 6 Nk we have

pi(xk,s, xk,r) =
∑

T

φi(k, s; k, r)
∏

16j6h, j 6=k

HNj ,nj ,dij
(tj),

where

φi(k, s; k, r) =











HNk−2,nk−2,dik
(tk) if i ∈ I31,

HNk−2,nk−2,dik−1(tk − 1) if i ∈ I32,

HNk−2,nk−2,dik−2(tk − 2) if i ∈ I33,

Liet. mat. rink. LMD darbai, 52:309–314, 2011.
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with

I31 = {i: xi < xk,s 6 xk,r}, I32 = {i: xk,s 6 xi < xk,r},

I33 = {i: xk,s 6 xk,r 6 xi}.

(iii) For 1 6 k < u 6 h and 1 6 s 6 Nk, 1 6 r 6 Nu we have

pi(xk,s, xu,r) =
∑

T

θi(k, s;u, r)
∏

16j6h, j 6=k,u

HNj,nj ,dij
(tj),

where

θi(k, s;u, r) =



















HNk−1,nk−1,dik
(tk)HNu−1,nu−1,diu

(tu) if i ∈ I41,

HNk−1,nk−1,dik−1(tk − 1)HNu−1,nu−1,diu
(tu) if i ∈ I42,

HNk−1,nk−1,dik
(tk)HNu−1,nu−1,diu−1(tu − 1) if i ∈ I43,

HNk−1,nk−1,dik−1(tk − 1)HNu−1,nu−1,diu−1(tu − 1) if i ∈ I44,

with

I41 = {i: xi < xk,s, xi < xu,r}, I42 = {i: xi > xk,s, xi < xu,r},

I43 = {i: xi < xk,s, xi > xu,r}, I44 = {i: xi > xk,s, xi > xu,r}.

Proof. Calculations of all conditional probabilities are based on the same arguments
as the derivation of (6) in [4]. Here for every of cases (i)–(iii) we need to consider,
under fixed conditions, a few different positions of xi only. Note that the set T is the
same for all probabilities, since we use the convention that

(

b

a

)

= 0 if a < 0; as well

as the convention that
(

b
a

)

= 0 if a > b. ⊓⊔

Empirical approximation. The parameters α = α(X ), κ = κ(X ) and σ2 = σ2(X )
defining approximation (1) are usualy unknown characteristics of the population X .
Thus they should be estimated in practice. In [4], for the estimation of the parame-
ter σ2, convenient plug-in rule was proposed, where strata distribution functions were
replaced by their corresponding empirical versions. However, it is not convenient for
the estimation of α and κ. Another way is to replace the population parameters by
their jackknife estimators, see [2]. But it is well known that in the case of sample
median (or other empirical quantiles) jackknife estimators often fail.

Here we consider the finite population bootstrap of [3]. Let η = η(X ) be any
characteristic of the population X . For 1 6 k 6 h write Nk = mknk + lk, where
0 6 lk < nk. Given the sample Xk drawn from the stratum Xk construct an empirical
stratum X ∗

k by combining mk copies of Xk with a simple random sample without
replacement Yk = {Yk,1, . . . , Yk,lk} of size lk from Xk. Then X ∗ = X ∗

1 ∪ · · · ∪X ∗
h is an

empirical (bootstrap) population, and the bootstrap estimator of η is then defined as

η̂ = E
(

η(X ∗
)
∣

∣ X
)

. (8)

Thus we have the bootstrap estimators α̂, κ̂ and σ̂2 of α, κ and σ2. However, it is
difficult to obtain their explicit expresions. Therefore, here we apply Monte Carlo
(MC) approximations for the parameters we are interested in. In particular, let
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X ∗
(1), . . . ,X

∗
(B) be B empirical populations constructed independently as described

above, i.e., we randomly and with replacement select B empirical populations from
all possible

∏h

k=1

(

nk

lk

)

. Then MC approximation to (8) is

η̃ =
1

B

B
∑

b=1

η(X ∗
(b)). (9)

Finally, replacing the true parameters α, κ and σ2 in (1) by their estimates α̃, κ̃
and σ̃2 we obtain the empirical approximation G̃(·) to Fmed(·).

2 Simulation study and conclusions

We perform a numerical comparison of distribution of sample median Fmed(·) with its
approximations Φ(·), G(·) and G̃(·). Here ‘exact’ distribution Fmed(·) is obtained by
a MC simulations, i.e., by drawing independently 105 stratified samples from X . In
particular, in tables below we present q-quantiles q = 0.01, 0.05, 0.10, 0.90, 0.95, 0.99
of Fmed(·), Φ(·), G(·) and G̃(·). For empirical approximation G̃(·) we give two char-
acteristics for each of the empirical q-quantiles: estimated values of its expectation
EG̃−1(q) and standard error SG̃−1(q) based on 102 stratified samples drawn indepen-
dently from X . To estimate the parameters α, κ and σ2 by (9) we take B = 30.

A population for two examples below consists of Lithuanian service enterprises
with economic activity classified as ‘combined facilities support activities’. For our
purposes we take three completely sampled strata of sizes N1 = 25, N2 = 7 and
N3 = 13, and for our simulations we choose sample sizes n1 = 10, n2 = 3 and n3 = 5.

Tables 1 and 2 present simulation results for the populations X (1) = X
(1)
1 ∪X

(1)
2 ∪X

(1)
3

and X (2) = X
(2)
1 ∪X

(2)
2 ∪X

(2)
3 , where elements of X (1) and X (2) are measurements of

income and number of persons employed respectively. We use the first-quarter data
of year 2011.

Table 1 shows that G(·) significantly improves Φ(·). However, it is not the case for
its empirical version G̃(·), since for a large part of the samples this approximation to
Fmed(·) is less accurate than Φ(·). Table 2 shows that G(·) evidently outperforms Φ(·).
Here the variability SG̃−1(·) is comparatively small, thus G̃(·) is also more efficient
than Φ(·).

We note that the proposed approximations may be very efficient in real surveys
where we need to measure the accuracy of median in small domains of a population
(for some collections of strata) and where populations are highly skewed. Our formulas
with minor modifications are applicable for any quantile.

Table 1. The case of X (1).

q 0.01 0.05 0.10 0.90 0.95 0.99

F−1
med(q) −2.847 −2.013 −1.941 0.959 0.959 0.959

Φ−1(q) −2.326 −1.645 −1.282 1.282 1.645 2.326

G−1(q) −2.816 −1.946 −1.413 1.212 1.458 1.805

EG̃−1(q) −2.210 −1.635 −1.281 1.324 1.735 2.419

SG̃−1(q) 0.419 0.195 0.079 0.086 0.205 0.418

Liet. mat. rink. LMD darbai, 52:309–314, 2011.
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Table 2. The case of X (2).

q 0.01 0.05 0.10 0.90 0.95 0.99

F−1
med(q) −1.596 −1.260 −0.819 1.897 1.988 3.852

Φ−1(q) −2.326 −1.645 −1.282 1.282 1.645 2.326

G−1(q) −1.836 −1.470 −1.215 1.398 1.918 2.787

EG̃−1(q) −2.001 −1.529 −1.238 1.352 1.813 2.633

SG̃−1(q) 0.172 0.062 0.023 0.043 0.099 0.162
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REZIUMĖ

Medianos skirstinio aproksimacijos sluoksninėms imtims
A. Čiginas, T. Rudys

Darbe tiriamos empirinės medianos pasiskirstymo funkcijos Edžvorto tipo aproksimacijos, kai imtis
yra sluoksninė ir renkama be grąžinimo. Pateikiamas išreikštinis aproksimacijos pavidalas, bei jos
savirankos įvertinys. Skaitiniais pavyzdžiais parodoma, kad tokios aproksimacijos gali būti tikslesnės
už normaliąją.

Raktiniai žodžiai: baigtinė populiacija, sluoksninis ėmimas be grąžinimo, Hoeffding’o skleidinys,
Edžvorto skleidinys, saviranka.
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