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Abstract. The paper deals with a problem of classification of Gaussian spatial data into
one of two populations specified by different parametric mean models and common geo-
metric anisotropic covariance function. In the case of an unknown mean and covariance
parameters the Plug-in Bayes discriminant function based on ML estimators is used. The
asymptotic approximation of expected error rate (AER) is derived in the case of unknown
mean parameters and single unknown covariance parameter i.e., anisotropy ratio.
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Introduction

In the case of completely specified populations and known loss function, an optimal
classification rule in the sense of minimum risk is based on Bayesian discriminant
function (BDF) [4]. In the practical situations the complete statistical description
of populations usually is not possible. It is possible to estimate unknown parame-
ters and plug-in them into BDF when using training sample. Plug-in BDF is called
PBDF. The expressions for the expected error rate (ER) are very complicated even
for the simplest forms of PBDF, therefore, asymptotic approximations of the ER are
especially important.

Many authors have investigated the performance of the PBDF when parame-
ters are estimated from training samples consisting of dependent observations (see
e.g., [5]). Plug-in approach to discrimination for feature observations having ellipti-
cally contoured distributions is implemented in [2]. Šaltytė and Dučinskas [7] derived
the asymptotic approximation of the expected error rate when classifying the observa-
tion of a scalar Gaussian random field into one of two classes with different regression
mean models and common variance. However, the correlations between observations
to be classified and training sample were assumed equal zero in the all publications
listed above. This assumption is not correct in all situations, especially in cases where
the locations of observations to be classified are close to ones of training sample. The
first extension of above mentioned approximation to the case where spatial corre-
lations between Gaussian observations to be classified and observations in training
sample are not assumed equal zero is done in [3]. Here only the trend parameters and
variance (parameter of covariance function) are assumed unknown. The extension of
the latter approximation to the case of complete parametric uncertainty (all means
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316 L. Dreižienė

and covariance function parameters are unknown) was implemented in [4]. In the
present paper we derive closed form approximation of expected error rate in the case
of estimated mean parameters and estimated anisotropy ratio.

1 The main concepts and definitions

The main objective of this paper is to classify the observations of Gaussian random
field (GRF) {Z(s): s ∈ D ⊂ Rp} into one of two populations. Suppose that the model
for observation Z(s) in population Ωj is

Z(s) = x′(s)βj + ε(s), (1)

where x(s) is a q × 1 vector of non random regressors and is a vector of parameters,
j = 1, 2. The error term is generated by zero-mean stationary GRF with covariance
function defined by model for all s, u ∈ D

cov
{

ε(s), ε(u)
}

= C(s− u; θ), (2)

where θ ∈ Θ is a p× 1 parameter vector, Θ being an open subset of Rp.
For the given training sample, consider the problem of classification of the Z0 =

Z(s0) into one of two populations when the training sample T is given and

x′(s0)β1 6= x′(s0)β2, s ∈ D. (3)

Denote by Sn = {si ∈ D; i = 1, . . . , n} the set of locations where training sample
T ′ = (Z(s1), . . . , Z(sn)) is taken, and call it the set of training locations. We shall
assume the deterministic spatial sampling design and all analyses are carried out
conditional on Sn.

Sn is partitioned into union of two disjoint subsets, i.e., Sn = S(1) ∪ S(2), where
S(j) is the subset of Sn that contains nj locations of feature observations from Ωj ,
j = 1, 2.

This is the case where spatial classified training data is collected at fixed locations
(stations).

The n× 2q design matrix of the training sample T denoted by X is specified by

X = X1 ⊕X2,

where symbol ⊕ denotes the direct sum of matrices and Xj is the nj × q matrix of
regressors for observations from Ωj , j = 1, 2.

So the model of the training sample is

T = Xβ + E,

where β = (β′

1, β
′

2)
′ is a 2q × 1 vector of regression parameters and E is the n × 1

vector of random errors that has multivariate Gaussian distribution Nn(0, C(θ)).
Denote by c0(θ) the covariance between Z0 and T . Let t denote the realization

of T .
For notational convenience, the argument θ in all its functions is now dropped.
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Since Z0 follows model specified in (1), the conditional distribution of Z0 given
T = t, Ωj is Gaussian with mean µ0

lt and variance σ2
0(θ)

µ0
lt = E(Z0|T = t;Ωj) = x′

0βj + α′

0(t−Xβ), j = 1, 2, (4)

σ2
0(θ) = var(Z0|T = t;Ωj) = C(0)− c′0C

−1c0, (5)

where x′

0 = x′(s0) and α′

0 = c′0C
−1.

Under the assumption of complete parametric certainty of populations and for
known finite nonnegative losses {L(i, j), i, j = 1, 2}, the BDF minimizing the risk of
classification is formed by log ratio of the conditional likelihoods.

Then Bayes discriminant function (BDF) is

Wt(Z0;Ψ) =

(

Z0 −
1

2

(

µ0
1t + µ0

2t

)

)

(

µ0
1t − µ0

2t

)

/σ2
0 + γ, (6)

here γ = ln(π∗

1/π
∗

2), Ψ = (β′, θ′)′, π∗

j = πj(L(j, 3 − j) − L(j, j)), j = 1, 2. π1, π2 are
prior probabilities of the populations Ω1 and Ω2, respectively.

In the practical applications not all statistical parameters of populations are
known. The PBDF is constructed by replacing parameters in the BDF with their
estimators.

Let β̂, θ̂ be the estimators of corresponding parameters from training sample T .
Then the PBDF has the following form

Wt(Z0; Ψ̂) =

(

Z0 − α̂′

0(t−Xβ̂)−
1

2
x′

0Hβ̂

)

(

x′

0Gβ̂
)

/σ̂2
0 + γ, (7)

with H = (Iq, Iq) and G = (Iq ,−Iq), where Iq denotes the identity matrix of order q.

Definition 1. The actual risk for PBDF Wt(Z0; Ψ̂) is defined as

P (Ψ̂) =
2

∑

i=1

2
∑

j=1

πiL(i, j)P̂ij , (8)

where for i, j = 1, 2
P̂ij = Pit

(

(−1)jWt(Z0; Ψ̂) < 0
)

. (9)

The actual risk specified in (8), (9) for Wt(Z0; Ψ̂) specified in (7) is (see e.g. [4])

P (Ψ̂) =

2
∑

j=1

(

π∗

jΦ(Q̂j) + πjL(j, j)
)

, (10)

and
Q̂j = (−1)j

(

(aj − b̂) sgn
(

x′

0Gβ̂
)

+ σ̂2
0γ/

∣

∣x′

0Gβ̂
∣

∣

)

/σ0, (11)

where for j = 1, 2 aj = x′

0βj + α′

0(t−Xβ), b̂ = α̂′

0(t−Xβ̂ + x′

0Hβ̂)/2.
The expectation of the actual risk with respect to the distribution of T is called

the expected risk (ER) and is designated as ET (P (Ψ̂)).
In this paper we assume that all true values of parameters β and single parame-

ter of covariance (anisotropy ratio) are unknown. So we will use estimates of these
unknown parameters form PBDF.

Liet. mat. rink. LMD darbai, 52:315–320, 2011.



i

i

“LMD11sta_dreiziene” — 2011/11/28 — 17:51 — page 318 — #4
i

i

i

i

i

i

318 L. Dreižienė

2 The asymptotic approximation of ER with estimated pa-

rameters

We will use the maximum likelihood (ML) estimators of parameters based on the
training sample. The asymptotic properties of ML estimators established by Mardia
and Marshall [6] under increasing domain asymptotic (increasing domain asymptotic
is based on a growing observation region) framework and subject to some regularity
conditions are essentially exploited. Hence, the ML estimator Ψ̂ is weakly consistent
and asymptotically Gaussian [4].

We make the following assumptions:
(A1) Assume that for large n β̂ ∼ AN2q(β, J

−1
β ) and θ̂ ∼ ANk(θ, J

−1
θ ).

Here Jβ = X ′C−1X and (i, j)-th element of Jθ is tr(C−1CiC
−1Cj)/2.

(A2) Training sample T and estimator θ̂ are asymptotically uncorrelated (see
e.g., [1]).

Note that sufficient conditions for (A1) is formulated in [6]. Under (A1), (A2) the
AER is derived in [4]. The accuracy of such a type approximation is examined in [3].

We consider the case where θ = λ, where λ is anisotropy ratio.
Let ∆2

0 be squared Mahalanobis distance between conditional distributions of Z0

given T = t.
Denote Λ′ = α′

0X − x′

0(H/2 + γG/∆2
0) and Kβ = Λ′J−1

β Λ.

Lemma 1. Suppose that observation Z0 to be classified by PBDF and let assumptions

(A1), (A2) hold. Then the approximation of ER in the case of estimated unknown

mean parameters and estimated unknown anisotropy ratio is

AER = P (Ψ) + π∗

1ϕ(−∆0/2− γ/∆0)∆0(Kβ +Kλ)/
(

2σ2
0

)

, (12)

where

Kλ = tr
(

CBJ−1
λ B′

)

+ γ2
((

σ̂2
0

)(1)

λ

)

′

J−1
θ

(

σ̂2
0

)(1)

λ
/
(

∆2
0σ

2
0

)

, (13)

here B is the first order partial derivative of α̂0 evaluated at the point λ̂ = λ

B = ∂α̂0/∂λ̂ = −C−1C
(1)
λ α0 + C−1(c0)

(1)
λ . (14)

(σ̂2
0)

(1)
λ denotes the first order partial derivative of σ̂2

0 (5) evaluated at the point λ̂ = λ

(

σ̂2
0

)(1)

λ
= −

(

c′0
)(1)

λ
α0 + α′

0C
(1)
λ α0 − α′

0(c0)
(1)
λ . (15)

(c0)
(1)
λ and C

(1)
λ in (14)–(15) are the first order partial derivatives of c0 and C evalu-

ated at the point λ̂ = λ.

Proof. The proof of lemma is similar to the proof of Theorem 1 [4] by replacing θ
with anisotropy ratio λ. ⊓⊔

Remark 1. Suppose we have the case of exponential spatial correlation function

r(h) = exp
{

−
√

h2
x + λ2h2

y/ϕ
}

.
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Then the expression of B is

B =
λσ2

ϕ
C−1(R ◦Hα0 − r0 ◦H0). (16)

Here ϕ is range parameter, ◦ represents the Hadamard product.
Let the covariance have form C = τ2I + σ2R, where R is n× n matrix of corre-

lations between components of T and (i, j)-th element is

Rij = exp
{

−

√

(

hij
x

)2
+ λ2

(

hij
y

)2/
ϕ
}

, i 6= j and Rij = 1 else.

Let H be n× n matrix and (i, j)-th element of H is

Hij =
(

hij
y

)2/
√

(

hij
x

)2
+ λ2

(

hij
y

)2
, i 6= j and Hij = 0 else.

Here hij
x = hi

x − hj
x, hij

y = hi
y − hj

y.
Denote by H0 n× 1 matrix and (i, j)-th element of H0 is

(

h0j
y

)2
/

√

(

h0j
x

)2
+ λ2

(

h0j
y

)2

and r0 is n× 1 matrix of correlations between Z0 and T , and (i, j)-th element is

exp
{

−

√

(

h0j
x

)2
+ λ2

(

h0j
y

)2/
ϕ
}

.

Here h0j
x = h0

x−hj
x, h0j

y = h0
y−hj

y, h0
x and h0

y are coordinates of s0. Using formulas

above (c0)
(1)
λ and C

(1)
λ have the following expressions

C
(1)
λ = −

λσ2

ϕ
R ◦H, (c0)

(1)
λ = −

λσ2

ϕ
r0 ◦H0.
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REZIUMĖ

Tiesinė diskriminantinė erdvinių Gauso duomenų analizė, naudojant anizotropi-
jos koeficiento įvertinius
L. Dreižienė

Straipsnyje analizuojamas Gauso erdvinių duomenų klasifikavimo į vieną iš dviejų populiacijų, kurių
vidurkio modeliai skirtingi, o geometriškai anizotropinė kovariacinė funkcija tokia pat, uždavinys.
Naudojama tiesioginio pakeitimo Bajeso diskriminantinė funkcija (PBDF), kuri gaunama vietoj neži-
nomų parametrų tiesioginio pakeitimo būdu įstačius jų įvertinius. Straipsnyje pateikiama klasifikav-
imo rizikos aproksimacijos formulė atvejui, kai nežinomi vidurkio parametrai ir nežinomas anizotropi-
jos koeficientas yra pakeisti jų įverčiais.

Raktiniai žodžiai: Bajeso diskriminantinė funkcija, klasifikavimo rizika, anizotropijos koeficientas,
atsitiktinis Gauso laukas
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