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The discount version of large deviations
for a randomly indexed sum of random variables
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Abstract. In this paper, we consider a compound random variable Z = E;\;l v/ X, where
0<wv<l1, Z=0,if N=0. It is assumed that independent identically distributed random
variables X1, X2, ... with mean EX = yp and variance DX = ¢2 > 0 are independent of
a non-negative integer-valued random variable N. It should be noted that, in this scheme
of summation, we must consider two cases: p # 0 and p = 0. The paper is designated
to the research of the upper estimates of normal approximation to the sum Z = (Z -
EZ)(DZ)~'/?, theorems on large deviations in the Cramer and power Linnik zones and
exponential inequalities for P(Z > ).

Keywords: cumulant, large deviations theorems, discounted limit theorems, normal approximation,

random number of summands.

Main conditions and results

Let’s say that N is a non-negative integer-valued random variable (r.v.) with mean
EN = a, variance DN = 2, and the distribution P(N = 1) = p;, | = 0,1,....
In addition, {X,X;, j = 1,2,...} is a family of independent identically distributed
(i.i.d.) random variables (r.v.s) with mean EX = y, variance DX = o2 > 0 and the
distribution function F(z) = P(X < z), x € R. We assume that X are independent
of N. Furthermore, the k-th order cumulants and the characteristic function of X
will be denoted by I'v(X), k=1,2,..., ox(u) = Eexp{iuX}, u € R, respectively.

Denote a compound r.v. Z as follows

N
Z=Y vX; 0<v<l, Z=0, if N=0.
j=1

The research of randomly weighted sums plays an important role in insurance, eco-
nomic theory, finance mathematics and is essential in other fields too. For instance,
in the ruin theory the weights are interpreted as discount factors and the sequence X
as the net returns of an insurance company to analyse the probability of ruin either
in a finite or infinite time (see, for example, [2]).
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Denote,
N . N
T:qu]’ T:Z”UQJ, (1)
j=1 J=1
Ev"Y = kalpz, DN = Eo?*N — (EUkN)27 k=1,2,.... (2)
1=0

Note that T = (1 — v™)v/(1 —v), T = (1 — v*N)v?/(1 — v?). Therefore, in view of
(1), (2), we calculate

ET:U(l—EUN)/(l—U)7 ET:’U2(1—EU2N)/(1—’U2),
ET? = v?(Ev*Y —2E0™ +1)/(1 — v)?, DT = v*Dov" /(1 — v)?.

According to (5), (6) in [1], we get
EZ = uET, DZ = o’ET + 1°DT.

We say that the r.v. X with o2 > 0 satisfies condition (B.,) if there exist constants
v 2 0 and K > 0 such that

[EX* < (k)" KFPEX?, k=3,4,.... (B,)

Note that E(X — u) = 0, E(X — u)? = o2, therefore (B,) implies |[E(X — p)*| <
(k)7 K*=252. Taking into consideration that I',(X) = I',(X — ), k = 2,3,... and
according to Lemma 3.1 in [6], we get

|Du(X)| < (B MF 262, k=3,4,..., (S)

where M = 2(o V K). Furthermore, we assume that the r.v. T satisfies condition (L)
if there exist constants Ky > 0 and p > 0 such that

|0W(T)| < (1/2)k Ky (DT =2 =23, (L)

It should be noted that here condition (L) is used if 4 # 0. And if p = 0, then for
the r.v. T we use the following condition (L)

|0(T)| < KIKSYET) RV =12, (L)

where Ko > 0.

It will be observed that, to achieve the purpose of this paper, we have to use the
cumulant method (see [6]) developed by R. Rudzkis, L. Saulis, V. Statulevicius (1978).
The cumulant method is good in the investigation of large deviations for randomly
indexed sums of both independent and dependent r.v’s. Since we are interested
not only in the convergence to the normal distribution, but also in a more accurate
asymptotic analysis of the distribution, we must find an accurate upper estimate for
Fk(Z~)7 k = 3,4,..., where Z = (Z —EZ)(DZ)"Y2. And afterwards, we can use
general lemmas on the behaviour of F;(z) = P(Z < x).

Recall that 0 < v < 1 and denote (bV ¢) = max{b, c}b, c € R.
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Lemma 1. If, for the r.v. X with mean p # 0 and variance o > 0, condition (B.)
is fulfilled and the r.v. T satisfies condition (L), then

|TW(2)] < (BT /A2 k=34,... (3)
where
A, =L,'"VDZ,  L,= (2K|u|(DT)? Vv (1Va/(2|u]))2vM). (4)

If =0 and X, T satisfy conditions (B,), (L), then estimate (3) holds with A, = A,,
where B B B B
A, =L;'VDZ, L, = (2V K2(ET)?)(1/2V v)M. (5)

In the current paper, we obtain the accuracy of approximation of the distribution
function Fz(z) by the standard normal distribution function @(x).
Denote

Avy = ey AU ey = (1/6)(V2/6) 1/ (2,

Theorem 1. Let X with pp # 0, 0> > 0, and T satisfy conditions (B.) and (L),
respectively. Then
sup |[Fz(z) — @(x)| < 18/A,. (6)

Moreover, the large deviations theorem in the Cramer and power Linnik zones is
proved and exponential inequalities are obtained.

Theorem 2. Let X with pn # 0, 0> > 0, and T satisfy conditions (B.) and (L),
respectively. Then the relations

1—F;(x) Fs(—x)
o 0 2w

— 1, (7

~—

hold for x > 0, x = o((DT)(*/2=P*()) as v — 1, and %> — oo. Here v(7y) =
(1+2(1vy)~H, 0< p< 1/2. Ify =0, then (7) holdfor:c >0, z = o((DT)1/2-9)/3),
)

Theorem 3. Let X with pp # 0, 0> > 0, and T satisfy conditions (B.,) and (L
respectively. Then the exponential inequalities

{ exp{—a2/23+7}, 0< < (24 A,)1/0+2)
>

P(+Z > 1) < 2
exp{—(z AN /4}, 2 > (20417 A,)1/(0+27)

(8)

are valid.

Remark 1.1f = 0 and for the r.v’s X, T conditions (B,), (L) are fulfilled, then
estimates (6), (8) hold with A, = A,. Furthermore, (7) hold for z > 0, z =
o((ET)(1/27P)¥(M) "as v — 1, and o — oo.

Remark 2. 1If N = N¢, t > 0 is a homogeneous Poisson process with intensity A > 0,
then ET, DT hold with Ev?Vt = ¢ MI-v") DyNe = o= M1-v")(] _ o=At(1-v)%),
Accordingly, (7) hold if v — 1, and ¢t — oo.

If N is distributed according to the binomial law with the parameters 0 < p; < 1,
n=0,1,..., then ET, DT hold with Ev?" = (1 — p;(1 — v?))", Do = (1 — p1(1 —
v?))" — (1 — p1(1 — v))?". Therefore, (7) hold if v — 1, and n — cc.
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Note that, for the r.v. Z in the case u # 0, v/ = a;, j =1,2,...,0 < aj < oo, and
in the case a; = 1, large deviations theorems in the Cramer zone have been proved in
the papers [1, 5]. Besides, large deviation theorems in a discounted version when N
is a non-random variable have been proved in [4].

Proofs of Lemma 1 and Theorems 1-3

Proof of Lemma 1. Since i.i.d. r.v’s X;, j = 1,2,... and N are independent, the
proof of Lemma 1 in [1], yields

l

pz(u) = Ee™? ZeXp{Zk;ZU]ka }pl, u € R, (9)

where 25:1 vk =¥ (1 — o) /(1 — v*). Based on Lemma 1 and equality (1.6) in [3],
in addition, taking into account (9), we find that, for all k = 1,2, ...,

Tu(Z) =K1Y (=1 (m = 1)!
AL (IS () )

s=1 7j=1
where Y7, 37 denote a summation over all the non-negative integer solutions my +
2mo + -+ kmp =k, m=mq + -+ myg, and 71 + 2n2 + - - - + s = s, respectively.
The application of 23:1 T L o2 22:1 0¥ | T (T)| < v™| T (T)| and conditions
(S), (L), allows us to assert that

|1W(2)| <k DT |Hm'< 2 r(x |> . o)

<YM (M) 26%ET + = k'DTZ

4 ml ..... mk‘fl!

5 my k—1
X (Kl(DT)p)m_QUm(M) H ((s!)V(UM)S_QUQ)mS. (11)
v
s=2

where Fm(f) = m!> (=" 7 — DI, (1/m((1/n) JET™)™, ET" =
>so (Z =1 v? ) pi. In addition, )5 denotes a summation over all the non-negative
integer solutions 7 + 270 + --- +m7y, = m, and T = T + -+ + Tn; 24 is taken
over all the non-negative integer solutions mi +2mo +--- + (k: — 1)mg—1 = k, where
0<my,....mp 1 <k,andm=mq+---+mrp_1. Here k=2,3...,2<m < k.

We need the equality g, = > 7 m!/(mq!l--- - my!) =21 k =1,2... and inequal-
ity ald! < (a+b)!. It is assumed by convention that go = 1. Consequently, after
evaluations when p # 0, we get

* m! k=1
: __ ok—1 _ 1\s o | o
Z4—m1! — =2 1, 1:[1(3.) <(k-1), k=23,...,
k-1 ) e
’Um(’U_ll,qul H ((UM)S—QOQ)WS < |M|m((1 v 0_(2|'u|)— )’UM) —m, k= 3,47 .
s=2
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asma+2mg+---+(k—2)mp_1 =k —m, 0 <ma+---+mg_1 < k—m. By substi-
tuting these estimates into (11), we obtain |I'w(Z)| < ()17 LF2DZ, k = 3,4,....
Finally, in accordance with I'x(Z) = (DZ)~ k/QFk(Z EZ) = (DZ)"*/2I(2), we
get estimate (3) with constants (4).

Now, suppose that p = 0, and 0° = 1. With reference to (10) and conditions (S),
(L), we find

B k
11 (2)| < k'ETZSﬁ(KQ(ET " H ((s)(vM)*~26%)™,

where the sum Z; is taken over all the non-negative integer solutions 2mo + - - - +
kmy = k, where 0 < mo,...,mi < k, and m = mo + --- +my. Here k = 2,3,...,
1 < m < k. The next step is to evaluate similarly as in the case where p # 0.
Afterwards, we derive

* m! o k . B
sm g <2 L6k, k=23
k .
[T (wh)*=26%)™ < (o/(20))" (wM)E™, k=2,3,...,
s=2

as mg + 2mg + -+ + (k — 1)mg = k — m. Accordingly, |Ix(Z)| < (k)'*+7LF2DZ,
k=3,4,.... In view of I'y(Z) = (DZ)"*/2I'\(Z), we prove Lemma 1. O

Proof of Theorem 1. The proof of Theorem 1 is obtained thanks to estimate (3).
The compound r.v. Z satisfies V. StatuleviCius’ condition (S,) (see [6]) with the
parameter A = A,. Thus Corollary 2.1 in [6] yields the proof of this theorem. O

Proof of Theorem 2. The statement of Theorem 2 follows immediately from Lem-
ma 2.3 in [6] with A = A,. We have to prove that L,(z) — 0, z/A,, — 0, as
A, — oo, where L, (z) is defined by (2.8) in [6].

Recalling the definitions of A,, ET, DT, we get A, > C(DT)'/2?, C > 0. Hence
it follows that 0 < p < 1/2, A, — oo, in case (DT)'/?27P — oo. We have calculated
that DT — 0o, as v — 1 and 32 — oo. Thanks to estimate (3) and equality (2.9)

n [6 ] for all x = 0((DTt)(1/2 PN with v(y) = (14 2(1 V)™, we obtain that
Ao = (1/6)TH(Z)2 = o (DT 00020050} Z (1) for 1 (1) < 0, 5 > 0,
and /A, = = o((DT)2*M/2=p)(y=(V7)/(1427)) = o(1), for v — (1 V) < 0, v > 0,
if DT — co. Thus L,(z) — 0 for all z > 0 such that z = o((DT)(}/2=P)v(M),
0<p<1/2,asv—1land 82 = oco. O

Proof of Theorem 3. The proof of Theorem 3 follows from Lemma 2.4 in [6], where

relations (2.12)—(2.14) hold with H =27, A= A,. O
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REZIUME

Atsitiktinio démeny skai¢iaus sumoms didziyjy nuokrypiy diskontavimo versija
A.Kasparaviciuteé, L.Saulis

Siame darbe nagrinéjame sudeétinj atsitiktinj dydj Z = z;V: VX, Ea0<v<l,Z=0,jei N=0.
Laikoma, kad nepriklausomi vienodai pasiskirste atsitiktiniai dydziai X;, j = 1,2,..., turintys
vidurkius EX = p ir dispersijas DX = 02 > 0, yra nepriklausomi nuo neneigiamas sveikas reikimes
igyjancio atsitiktinio dydzio N. Pazymeétina, kad tokioje sumavimo schemoje mes turime nagrinéti du
atvejus: p # 0ir u = 0. Sis darbas yra skirtas sumos Z = (Z—EZ)(DZ)~'/2 pasiskirstymo funkcijos
aproksimacijos normaliaja pasiskirstymo funkcija virSutiniams jverciams, didziyjy nuokrypiy teore-
moms tiek Kramerio, tiek laipsninése Liniko zonose ir tikimybés P(Z~ > z) eksponentinéms nelygy-
béms gauti.

Raktiniai ZodzZiai: kumuliantai, didziyjy nuokrypiy teoremos, diskontavimo ribinés teoremos, nor-
malioji aproksimacija, atsitiktinio démeny skaiciaus sumos.
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