
i

i

“LMD2010dlft_jana” — 2010/11/18 — 18:15 — page 9 — #1
i

i

i

i

i

i

Lietuvos matematikos rinkinys. LMD darbai ISSN 0132-2818

51 tomas, 2010, 9–15 www.mii.lt/LMR/

Equations for nonlinear diffusion

Arvydas Juozapas Janavičius

Šiauliai university

P. Višinskio 19, LT-76351 Šiauliai

E-mail: AYanavy@gmail.com

Abstract. The diffusion is the result of Brownian movement and occurs with a finite

velocity. We presented the nonlinear diffusion equation, with diffusion coefficient directly

proportional to the impurities concentration. Analytical solutions, showing that the maxi-

mum displacements of diffusing particles are proportional to the square root of diffusion time

like for Brownian movement, was obtained. For small concentrations of impurities, nonlinear

diffusion equation transforms to linear.
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1 Introduction

This paper is stimulated by author’s scientific investigations about period of thirty
years. In late 1982 author proposed nonlinear diffusion equation with diffusion coeffi-
cient directly proportional to the impurities concentration. This equation corresponds
to the diffusion process which can occur with a finite velocity. This statement is not
satisfied in Fick’s first and second laws or linear diffusion equation. The experimental
profiles of boron and phophorus in crystal silicon were successfully approximated by
the theoretical solutions of this nonlinear equation. The nonlinear diffusion equation
was solved for temperature and for the diffusion coefficient depending on time in a
special way. The temperature function T (t) has a singularity at an arbitrarily chosen
time moment t0. The obtained analytical solutions describe the diffusion in the case
of excited systems when the vacancies and the impurity atoms are not in thermal
equilibrium with the lattice. The possibility of superdiffusion is shown considering
the connection between the presented temperature function and the excited state
population for atoms surrounding vacancies. The excited charged vacancies at room
temperature in Si crystals were obtained by irradiation of the sample with soft X-rays.
Diffusion coefficients for that excited vacancies are about 104 times large than diffu-
sion coefficients of vacancies obtained by thermal heating. These excited vacancies
we used for fast introducing Boron and Phosphorus at room temperature in crystal
silicon. The obtained technologies can be used in production of new microprocessors
and new devices.

In the result of a external perturbations the system can be transferred to no
equilibrium state where distribution of temperature, pressure and concentration de-
pends on coordinates ~r and are characterized by appropriate gradients ∇T (~r) 6= 0,
∇ni(~r) 6= 0. The force of movement descended by these gradients generates the

http://www.mii.lt/LMR/
mailto:AYanavy@gmail.com


i

i

“LMD2010dlft_jana” — 2010/11/18 — 18:15 — page 10 — #2
i

i

i

i

i

i

10 A.J. Janavičius

diffusion fluxes of mass and heat for i component of system

~Ji = −α
µ
i ∇ni − αT

i ∇T. (1)

Here α
µ
i and αT

i proportionality coefficients, ni concentration of i-th component of
diffusing impurities. Using (1) for isothermical case we obtain diffusion flux density

Ji = −Di∇ni, (2)

with diffusion coefficient Di which depends on temperature, concentration of all com-
ponents and chemical potential. Eq. (2) coincides with phenomenological Fick’s first
law published in 1855.

2 Models for the nonlinear diffusion

We discuss the properties of the nonlinear diffusion equation with the diffusion coeffi-
cient directly proportional to the concentration of the impurities presented in [7, 10, 3].

The diffusion coefficient must be equal zero in the region where the impurities are
absent. In [7] the following nonlinear diffusion equation was proposed,

∂n

∂t
=

∂

∂x

(

D
∂n

∂x

)

, j = −D
∂n

∂x
, (3)

with the diffusion coefficient directly proportional to the impurities concentration

D(t, n) = Dnn(x, t). (4)

Eqs. (3), (4) was proposed [7] as a new more physically motivated diffusion equation.
This model includes the physically realistic model according to which the impurities
flux (3) j, rewritten by the discretization method, differs from zero at the point x+∆x

J(x +∆x, t) ≈ −Dnn(x, t)
n(x+∆x, t) − n(x, t)

∆x

only if impurities present at the point x.
Physically, the latter equation means that the length of the jump of diffusing

particles from the point x to x +∆x in the diffusion process is not greater than ∆x

and jump is possible only when a diffusing particle exists at the point x. In this
model, the maximum penetration depth of diffusing impurities has finite value, and
it grows with finite velocity.

For nonlinear diffusion [7] in solids

Dn =
D0

Na
e

−E

kT , (5)

where D0 is the pre-exponential factor, E is the activation energy and Na is nonlin-
earity coefficient.

Later (3) was presented in [10] as the diffusion equation for a high-concentration
of boron and phosphorus which included effects such as lattice vacancy generation
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Equations for nonlinear diffusion 11

and the internal electric field. In this case the diffusion coefficient was expressed in
the form [10]

D = Di

(

2β

1 + β

)

n

nie
, (6)

where Di is the intrinsic diffusivity, nie is the intrinsic carrier concentration and β is
a phenomenological constant.

The offer (4) has been made by very common theoretical assumption that diffusion
is result of Brownian movement and diffusion must occur with finite velocity.

Now we will consider similarity solution of the nonlinear diffusion equation (3)
with boundary

n(0, t > 0) = Ns, n(∞, t) = 0 (7)

and the initial
n(x, 0) = 0, x > 0 (8)

conditions. Introducing the similarity variable [3]

ξ =
x√
Dst

, DS = DnNs, (9)

and
n(x, t) = Nsf(ξ), (10)

into (3) we can get the nonlinear ordinary differential equation

2
d

dξ

(

f
d

dξ
f

)

+ ξ
d

dξ
f = 0. (11)

We can express the solution of the nonlinear equation (11) in the power series

f(ξ) =

∞
∑

n=0

anξ
n. (12)

From the boundary conditions (7), (9), (10) we obtain a0 = 1. Substituting (12)
into (11) we obtain the system of equations [7, 3]

2
n
∑

m=0

(n+ 1−m)(m+ 1)an+1−mam+1 + 2
n
∑

m=0

cnm + nan = 0,

cnm = (n+ 2−m)(n+ 1−m)an+2−mam, n = 1, 2, 3 . . . . (13)

Taking in (12) a finite number of coefficients and solving the system of equations (13)
we obtain the second approximate solutions for (11)

N4 = Ns

(

1− 0.4439ξ − 0.09855ξ2 − 6.754× 10−3ξ3 + 3.582× 10−4ξ4
)

,

0 6 ξ 6 ξ04, ξ04 = 1.615, x04 = 1.615
√

NsDnt, 0 6 x 6 x04, (14)

N5 = Ns

(

1− 0.4436ξ − 0.09837ξ2 − 6.671× 10−3ξ3 + 4.002× 10−4ξ4

+ 2.157× 10−5ξ5
)

, ξ05 = 1.617, x05 = 1.617
√

NsDnt, 0 6 x 6 x05. (15)

Liet. mat. rink. LMD darbai, 51:9–15, 2010.
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12 A.J. Janavičius

The obtained approximate solutions satisfy boundary (7) and initial (8) conditions.
Obtained maximum penetration depts of impurities (14), (15) are proportional to

√
t

and coincide with Brownian movement theory [8]. Substituting ξ04 into N4 we get
1.71× 10−3, whence we see that the roots ξ04 and the solutions N4 are obtained with
sufficient accuracy. Solutions (14) and (15) approximately coincide. If Na = Ns we
can obtain from (15) that the maximum penetration depth of an impurities into the
solids is

ξ0 = 1.617
√

Dst. (16)

In this case the diffusion coefficient at the surface Ds attains the standard mean-
ing. On the frontier of diffusion for x = x0 the concentration of impurities and
diffusion coefficient (4) is decreasing to zero. x0 defines the maximum penetration
depth of impurities which approximately equals square root from the mean-square
displacement [8]

√
x2 =

√

2Dct, Dc =
∆2

2τ
, (17)

where ∆ is a atom jump and τ is the average time between the elementary jumps.
From this we can draw the conclusion that Ds approximately equals Dc. The proof
of (17) is based on the equality of the probability jumps in the positive and negative
directions. The atom can diffuse by the vacancy mechanism. A vacancy must occupy
the nearest neighbour positions of a diffusing atom and the number of free vacancies
in positive direction must be larger and Ds > Dc.

Theorem 1. The diffusion coefficient for nonlinear diffusion (5) multiplied by impu-

rities concentration at the source is aprohimately equal to the diffusion coefficient for

the linear diffusion.

We will prove this theorem considering diffusion on the frontier, including fact
about diffusion with finite velocity. For the one-dimensional case the flux density
expression in the point x0 can be written as

j =
∆

2τ

[

ρ

(

x0 −
1

2
∆

)

− ρ

(

x0 +
1

2
∆

)]

. (18)

On the frontier of diffusion

ρ

(

x0 +
1

2
∆

)

= 0. (19)

Taking into account (17) and (18) can be approximated with reasonable accuracy,

j = −
(

∆2

2τ

)

ρ(x0)

ρ(x0 − 1

2
∆)

(

∆ρ

∆

)

x0

,
∆ρ

∆
=

dρ

dx
. (20)

From the formulaes (20) and (19) we find that the flux density on the frontier

j = − Dc

ρ(x0 − 1

2
∆)

ρ(x0)

(

d

dx
ρ

)

x0

(21)

satisfies the nonlinear diffusion equations (3), (4).
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Comparing (21) with (3)–(5) we obtain

Dcρ(x0)

ρ(x0 − 1

2
∆)

=
D0e

−∆E/kTn

Na
. (22)

We can define the linear diffusion coefficient D of impurities in standart form

Dc ≈ D = D0e
−∆E/kT (23)

on the frontier of diffusion from (4) and (23) we have

N(x0) = Na
ρ(x0)

ρ(x0 − 1

2
∆)

. (24)

This condition is satisfied near the surface Na = Ns. We obtained that Ds =
D0Ns = D and theorem is proved. Using this result we can compare theoretical
prifiles of impurities in crystal with experiment [9, 2].

We assume that the process of spreading of impurities is similar to other diffusion
processes and, in the nonlinear case, can be described by nonlinear flow density I.
In the case of three dimensions when the frequencies of the jumps depends upon the
particle coordinates and the time variation of the impurities concentration n(x, y, z, t)
we have [1]

∂n

∂t
= Ix + Iy + Iz ,

Ix = v(x + L, y, z)n(x+ L, y, z) + v(x − L, y, z)n(x− L, y, z)− 2vn,

Iy = v(x, y + L, z)n(x, y + L, z) + v(x, y − L, z)n(x, y − L, z)− 2vn,

Iz = v(x, y, z + L)n(x, y, z + L) + v(x, y, z − L)n(x, y, z − L)− 2vn,

(25)

Here, L is the average free path of the particles of smoke or molecules of impurities in
gases, or the length of the jump of molecules or atoms from one equilibrium position
to another in fluids and solids; v are the frequencies of these collisions or jumps [5, 6].

Using sufficiently exact [5] expanding (25) in the power series and including three
main terms in the expansions of v and n, we obtain the following nonlinear equation:

∂n

∂t
= L2v∆n+ 2L2(grad v)(gradn) + L2n∆v = L2∆(v, n). (26)

We here used the frequency of collisions the same like in [5].

v(x, y, z, t) =
1

2
σn(x, y, z, t) · u

√
2.

Theorem 2. When diffusion coefficient is appointed on the frontier the diffusion pro-

cess must be definited by nonlinear equation (3), (4).

Taking into account that experimental diffusion coefficients are usually defined on
the front of diffusion profiles, we can replace gradv by (27) grad vf on the right side
of (26) where [5] v = σNu

√
2, D =

√
2L2σun we obtain the following nonlinear

equation
∂n

∂t
= Dn

[

n∆n+ (gradn)2
]

, Dn =
D

Ns
(27)

which coincide with nonlinear diffusion equations (3), (4). Theorem 2 is improved.

Liet. mat. rink. LMD darbai, 51:9–15, 2010.
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14 A.J. Janavičius

This Theorem 2 and nonlinear diffusion equation (27) is very important for dif-
fusion in solids [7, 10, 3], when diffusion occure through vacancies in lattice, because
in electronic devices production by diffusions processes the densites of introduced
impurities in semiconductors are the same oder like density of vacancies.

Theorem 3. When diffusion coefficient depends only on density of solvent gas the

diffusion equation (26) transforms to linear diffusion equation or second Fick’s law.

This theorem we improve substituting in (26) the average frequencies of collisions
in solvent gas [5] or impurities atoms jumps in solids. This situation can occure only
for small concentration impurities diffusion when impurities can not introduce any
changes in solvent gas and ν become constant.

It is interesting to consider the presented nonlinear equations and decide which
kind of obtained nonlinear diffusion equations conform with Fokker’s–Plank’s equa-
tion. At first was proposed first nonlinear diffusion equations [7, 3], (3), (4) and
we can present the second nonlinear diffusion equation for diffusion of impurities by
interstitials in solids [6]

∂n

∂t
=

∂2

∂x2

[

D(x)n
]

. (28)

The equations (3) and (28) can be rewritten using method of finite differences

∂n

∂t
=

1

L2

(

Dk+1/2(nk+1 − nk)−Dk−1/2(nk − nk−1)
)

, (29)

∂nk

∂t
=

1

L2
(Dk+1nk+1 − 2Dknk +Dk−1nk−1). (30)

In the equations (3), (29) diffusion coefficient is defined between two sites of lattice and
depends on its states. This nonlinear diffusion equation did not fit to Fokker’s-Planck’s
equation and can describe the diffusion through vacancies or in excited states [4].
In the nonlinear diffusion equations (28), (30) diffusion coefficient depends only on
coordinate of equilibrium place and probability of jump like for Brownian movement
is independent on direction. Nonlinear equation (28) can be applied to interstitial
diffusion.

3 Conclusions

The obtained in [6] nonlinear diffusion equation (26) can be transformed in to the
nonlinear equations (3), (4) when introduced diffusion coefficient is proportional to the
impurities concentration and was definited in the region where density of impurities
are equal half density of solvent. When concentration of impurities is small and dif-
fusion coefficient depends only on solvent parameters the equation (26) transform to
simple linear diffusion equation or to second Fick’s law.
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REZIUMĖ

Netiesinės difuzijos lygtys
A.J. Janavičius

Straipsnyje pateiktos netiesinės difuzijos lygtys aprašančios priemaišų difuziją vykstančią baigtiniu
greičiu. Įvestas netiesinės difuzijos koeficientas proporcingas priemaišų koncentracijai. Gauti analizi-
niai netiesinės difuzijos lygties sprendiniai parodantys kad maksimalus priemaišų įsiskverbimo gylis
yra proporcingas kvadratinei šakniai iš difuzijos laiko kaip ir Brauno judėjimo atveju. Dėl mažų
priemaišų koncentracijų netiesinė lygtis virsta tiesine.

Raktiniai žodžiai: difuzija, difuzijos koeficientas, netiesinė difuzijos lygtis, analiziniai sprendiniai.
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