Value-distribution of twisted *L*-functions of normalized cusp forms

Alesia Kolupayeva

Vilnius University, Department of Mathematics and Informatics

Naugarduko 24, LT-03225 Vilnius, Lithuania

Šiauliai University, Department of Mathematics and Informatics

P. Višinskio 19, LT-77156 Šiauliai, Lithuania

E-mail: alesia.su@gmail.com

Abstract. A limit theorem in the sense of weak convergence of probability measures on the complex plane for twisted with Dirichlet character L-functions of holomorphic normalized Hecke eigen cusp forms with an increasing modulus of the character is proved.

Keywords: Dirichlet character; Hecke eigen form; twisted *L*-functions.

1 Introduction

Let $q \in \mathbb{N}$, and let $\chi(m)$ denote a Dirichlet character modulo q. Then the twisted L-function $L(s, F, \chi)$ attached to the holomorphic normalized Hecke eigen cusp form F(z) of weight κ for the full modular group is defined, in the half-plane $\sigma > \frac{\kappa+1}{2}$, by the Dirichlet series

$$L(s, F, \chi) = \sum_{m=1}^{\infty} \frac{c(m)\chi(m)}{m^s}, \quad s = \sigma + it.$$

Here

$$F(z) = \sum_{m=1}^{\infty} c(m)e^{2\pi i m z}, \quad c(1) = 1,$$

is the Fourier series expansion for F(z). The function $L(s, F, \chi)$ can be analytically continued to an entire function. Also, in the half-plane $\sigma > \frac{\kappa+1}{2}$, it can be represented by the Euler product

$$L(s, F, \chi) = \prod_{p} \left(1 - \frac{\alpha(p)\chi(p)}{p^s} \right)^{-1} \left(1 - \frac{\beta(p)\chi(p)}{p^s} \right)^{-1}$$
 (1)

over primes p. The complex numbers $\alpha(p)$ and $\beta(p)$ satisfy $\alpha(p)\beta(p)=1$, $\beta(p)=\overline{\alpha(p)}$, and $\alpha(p)+\beta(p)=c(p)$.

For $Q \ge 2$, define

$$M_Q = \sum_{q \leqslant Q} \sum_{\substack{\chi = \chi \pmod{q} \\ \chi \neq \chi_0}} 1,$$

where χ_0 denotes the principal character mod q. For brevity, let

$$\mu_Q(\ldots) = M_Q^{-1} \sum_{q \leqslant Q} \sum_{\substack{\chi = \chi \pmod{q} \\ \chi \neq \chi_0}} 1,$$

where in place of dots a condition satisfied by a pair $(q, \chi(\text{mod } q))$ is to be written.

The aim of this note is a generalization to the space $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ of limit theorems with an increasing prime modulus q for $|L(s, F, \chi)|$ and $\arg L(s, F, \chi)$ (see, [3] and [4], respectively). We recall that the function

$$w(\tau, k) = \int_{\mathbb{C}\setminus\{0\}} |z|^{i\tau} e^{ik \arg z} dP, \quad \tau \in \mathbb{R}, \ k \in \mathbb{Z},$$

is a characteristic transform of the probability measure P on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ and the measure P is uniquely determined by its characteristic transform $w(\tau, k)$.

Let P and P_n , $n \in \mathbb{N}$, be a probability measures on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$. We say that P_n converges weakly in sense of \mathbb{C} to P if P_n converges weakly to P as $n \to \infty$, and, additionally, $\lim_{n\to\infty} P_n(\{0\}) = P(\{0\})$.

For $\tau \in \mathbb{R}$ and $k \in \mathbb{Z}$, let

$$\xi = \xi(\tau, \pm k) = \frac{i\tau \pm k}{2},$$

and, for primes p and $l \in \mathbb{N}$,

$$d_{\tau,\pm k}(p^l) = \frac{\xi(\xi+1)\dots(\xi+l-1)}{l!}, \quad d_{\tau,k}(1) = 1.$$

Define

$$a_{\tau,k}(p^{l}) = \sum_{j=0}^{l} d_{\tau,k}(p^{j}) \, \alpha^{j}(p) \, d_{\tau,k}(p^{l-j}) \, \beta^{l-j}(p),$$

$$b_{\tau,k}(p^{l}) = \sum_{j=0}^{l} d_{\tau,-k}(p^{j}) \, \overline{\alpha}^{j}(p) \, d_{\tau,-k}(p^{l-j}) \, \overline{\beta}^{l-j}(p),$$

and for $m \in \mathbb{N}$, let

$$a_{\tau,k}(m) = \prod_{p^l \parallel m} a_{\tau,k}(p^l), \qquad b_{\tau,k}(m) = \prod_{p^l \parallel m} b_{\tau,k}(p^l).$$

Thus $a_{\tau,k}(m)$ and $b_{\tau,k}(m)$ are multiplicative arithmetical functions.

Let $P_{\mathbb{C}}$ be a probability measure on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ defined by the characteristic transform

$$w(\tau, k) = \sum_{m=1}^{\infty} \frac{a_{\tau, k}(m) b_{\tau, k}(m)}{m^{2\sigma}}, \quad \sigma > \frac{\kappa + 1}{2},$$

and let the modulus q of χ be prime.

Define

$$P_{Q,\mathbb{C}}(A) = \mu_Q(L(s, F, \chi) \in A), \quad A \in \mathcal{B}(\mathbb{C}).$$

Theorem 1. Let $\sigma > \frac{\kappa+1}{2}$. Then the probability measure $P_{Q,\mathbb{C}}$ converges weakly in sense of \mathbb{C} to the measure $P_{\mathbb{C}}$ as $Q \to \infty$.

2 Proof of Theorem 1

We give a shortened proof of Theorem 1. At first, we define the characteristic transformation $w_Q(\tau, k)$ of the probability measure $P_{Q,\mathbb{C}}$, and later we give its asymptotic formula. The definition of $P_{Q,\mathbb{C}}$ implies that, for $\tau \in \mathbb{R}$ and $k \in \mathbb{Z}$,

$$w_Q(\tau, k) = \frac{1}{M_Q} \sum_{\substack{q \leqslant Q \\ \chi \neq \chi_0}} \sum_{\substack{\chi = \chi \pmod{q} \\ \chi \neq \chi_0}} \left| L(s, F, \chi) \right|^{i\tau} e^{ik \arg L(s, F, \chi)}. \tag{2}$$

Note that, in view of the Euler product (1) for $L(s, F, \chi)$ and Deligne's estimates

$$\left|\alpha(p)\right| \leqslant p^{\frac{\kappa-1}{2}}, \qquad \left|\beta(p)\right| \leqslant p^{\frac{\kappa-1}{2}},$$
 (3)

 $L(s,F,\chi) \neq 0$ for $\sigma > \frac{\kappa+1}{2}$. For $\delta > 0$, let $R = \{s \in \mathbb{C}: \sigma \geqslant \frac{\kappa+1}{2} + \delta\}$. Since

$$\left|L(s,F,\chi)\right| = \left(L(s,F,\chi)\overline{L(s,F,\chi)}\right)^{\frac{1}{2}} \quad \text{and} \quad e^{i\arg L(s,F,\chi)} = \left(\frac{L(s,F,\chi)}{\overline{L(s,F,\chi)}}\right)^{\frac{1}{2}},$$

from (1) we have that, for $s \in R$,

$$\begin{split} \left| L(s, F, \chi) \right|^{i\tau} e^{ik \arg L(s, F, \chi)} \\ &= \prod_{p} \left(1 - \frac{\alpha(p)\chi(p)}{p^s} \right)^{-\frac{i\tau + k}{2}} \left(1 - \frac{\beta(p)\chi(p)}{p^s} \right)^{-\frac{i\tau + k}{2}} \\ &\times \prod_{p} \left(1 - \frac{\overline{\alpha}(p)\overline{\chi}(p)}{p^{\overline{s}}} \right)^{-\frac{i\tau - k}{2}} \left(1 - \frac{\overline{\beta}(p)\overline{\chi}(p)}{p^{\overline{s}}} \right)^{-\frac{i\tau - k}{2}}. \end{split} \tag{4}$$

Here the multi-valued functions $\log(1-z)$ and $(1-z)^{-w}$, $w \in \mathbb{C}\setminus\{0\}$, in the region |z| < 1 are defined by continuous variation along any path in this region from the values $\log(1-z)|_{z=0} = 0$ and $(1-z)^{-w}|_{z=0} = 1$, respectively.

Using the above notation, we have that, for |z| < 1,

$$(1-z)^{-\xi} = \sum_{l=0}^{\infty} d_{\tau,\pm k} (p^l) z^l.$$

Therefore, (4) shows that, for $s \in R$,

$$|L(s,F,\chi)|^{i\tau} e^{ik \arg L(s,F,\chi)} = \prod_{p} \sum_{j=0}^{\infty} \frac{d_{\tau,k}(p^j)\alpha^j(p)\chi(p^j)}{p^{js}} \sum_{l=0}^{\infty} \frac{d_{\tau,k}(p^l)\beta^l(p)\chi(p^l)}{p^{ls}}$$

$$\times \prod_{p} \sum_{j=0}^{\infty} \frac{d_{\tau,-k}(p^j)\overline{\alpha}^j(p)\overline{\chi}(p^j)}{p^{j\overline{s}}} \sum_{l=0}^{\infty} \frac{d_{\tau,-k}(p^l)\overline{\beta}^l(p)\overline{\chi}(p^l)}{p^{l\overline{s}}}$$

$$= \sum_{m=1}^{\infty} \frac{\hat{a}_{\tau,k}(m)}{m^s} \sum_{n=1}^{\infty} \frac{\hat{b}_{\tau,k}(n)}{n^{\overline{s}}}, \qquad (5)$$

where $\hat{a}_{\tau,k}(m)$ and $\hat{b}_{\tau,k}(m)$ are multiplicative functions defined, for primes p and $l \in \mathbb{N}$, by

$$\hat{a}_{\tau,k}(p^l) = \sum_{j=0}^{l} d_{\tau,k}(p^j) \alpha^j(p) \chi(p^j) d_{\tau,k}(p^{l-j}) \beta^{l-j}(p) \chi(p^{l-j})$$
(6)

and

$$\hat{b}_{\tau,k}(p^l) = \sum_{j=0}^l d_{\tau,-k}(p^j) \overline{\alpha}^j(p) \overline{\chi}(p^j) d_{\tau,-k}(p^{l-j}) \overline{\beta}^{l-j}(p) \overline{\chi}(p^{l-j}).$$
 (7)

For $|\tau| \leqslant c$ and $l \in \mathbb{N}$,

$$|d_{\tau,\pm k}(p^l)| \le \frac{|\xi|(|\xi|+1)\dots(|\xi|+l-1)}{l!} \le \exp\left\{|\xi|\sum_{v=1}^l \frac{1}{v}\right\} \le (l+1)^{c_1}$$

with a suitable positive constant c_1 depending on c and k, only. This, estimates (3), and (6)–(7) imply, for $|\tau| \leq c$ and $l \in \mathbb{N}$, the bounds

$$|\hat{a}_{\tau,k}(p^l)| \le (l+1)^{c_2} p^{\frac{l(\kappa-1)}{2}}$$
 and $|\hat{b}_{\tau,k}(p^l)| \le (l+1)^{c_2} p^{\frac{l(\kappa-1)}{2}}$

with a positive constant c_2 depending on c and k. Therefore, by the multiplicativity of $\hat{a}_{\tau,k}(m)$ and $\hat{b}_{\tau,k}(m)$, for $m \in \mathbb{N}$,

$$|\hat{a}_{\tau,k}(m)| = \prod_{p^l \mid m} |\hat{a}_{\tau,k}(p^l)| \le m^{\frac{\kappa - 1}{2}} d^{c_2}(m),$$
 (8)

and

$$|\hat{b}_{\tau,k}(m)| = \prod_{p^l \mid m} |\hat{b}_{\tau,k}(p^l)| \le m^{\frac{\kappa - 1}{2}} d^{c_2}(m),$$
 (9)

where d(m) is the classical divisor function.

Now we give an asymptotic formula for the characteristic transform $w_Q(\tau, k)$ as $Q \to \infty$. Let $r = \log Q$. It is well known that $d(m) = O_{\varepsilon}(m^{\varepsilon})$ with every positive ε . Therefore, for $s \in R$, $|\tau| \leq c$ and any fixed $k \in \mathbb{Z}$, estimates (8) and (9) yield

$$\sum_{m>r} \frac{\hat{a}_{\tau,k}(m)}{m^s} = O_{\varepsilon} (r^{-\delta+\varepsilon}) \quad \text{and} \quad \sum_{m>r} \frac{\hat{b}_{\tau,k}(m)}{m^s} = O_{\varepsilon} (r^{-\delta+\varepsilon}).$$

Substituting this in (5), we find that

$$\begin{split} \left| L(s, F, \chi) \right|^{i\tau} e^{ik \arg L(s, F, \chi)} \\ &= \left(\sum_{m < r} \frac{\hat{a}_{\tau, k}(m)}{m^s} + O_{\varepsilon} \left(r^{-\delta + \varepsilon} \right) \right) \left(\sum_{m < r} \frac{\hat{b}_{\tau, k}(m)}{m^s} + O_{\varepsilon} \left(r^{-\delta + \varepsilon} \right) \right). \end{split}$$

Thus, in view of (2), for $s \in R$, $|\tau| \leq c$ and any fixed $k \in \mathbb{Z}$,

$$w_Q(\tau, k) = \frac{1}{M_Q} \sum_{q \leqslant Q} \sum_{\substack{\chi = \chi \pmod{q} \\ \chi \neq \chi_0}} \left(\sum_{m \leqslant r} \frac{\hat{a}_{\tau, k}(m)}{m^s} \sum_{n \leqslant r} \frac{\hat{b}_{\tau, k}(n)}{n^{\overline{s}}} \right) + O_{\varepsilon} \left(r^{-\delta + \varepsilon} \right), \tag{10}$$

since the estimates

$$\sum_{m \le r} \frac{\hat{a}_{\tau,k}(m)}{m^s} = O(1) \quad \text{and} \quad \sum_{m \le r} \frac{\hat{b}_{\tau,k}(m)}{m^s} = O(1)$$

hold. However, (6)–(7) and the definitions of $a_{\tau,k}(m)$ and $b_{\tau,k}(m)$, show that

$$\hat{a}_{\tau,k}(m) = \prod_{p^l \mid m} \chi^l(p) \sum_{j=0}^l d_{\tau,k}(p^j) \alpha(p^j) d_{\tau,k}(p^{l-j}) \beta(p^{l-j}) = a_{\tau,k}(m) \chi(m)$$

and

$$\hat{b}_{\tau,k}(m) = b_{\tau,k}(m)\overline{\chi}(m).$$

Therefore, by (10), for $s \in R$, $|\tau| \leq c$ and any fixed $k \in \mathbb{Z}$,

$$w_{Q}(\tau, k) = \frac{1}{M_{Q}} \sum_{\substack{q \leqslant Q \\ \chi \neq \chi_{0}}} \sum_{\substack{\chi = \chi \pmod{q} \\ \chi \neq \chi_{0}}} \chi(m) \overline{\chi}(n) \left(\sum_{m \leqslant r} \frac{a_{\tau, k}(m)}{m^{s}} \sum_{n \leqslant r} \frac{b_{\tau, k}(n)}{n^{\overline{s}}} \right) + O_{\varepsilon} (r^{-\delta + \varepsilon}).$$

$$\tag{11}$$

It is easily seen that, for $m = n, m \leq r$, as $Q \to \infty$,

$$\frac{1}{M_Q} \sum_{\substack{q \leqslant Q \\ \chi \neq \chi_0}} \sum_{\substack{\chi = \chi \pmod{q} \\ \chi \neq \chi_0}} \chi(m) \overline{\chi}(n) = 1 - \frac{1}{M_Q} \sum_{\substack{q \mid m \\ q \leqslant r}} (q - 2) = 1 + o(1), \tag{12}$$

since [2]

$$M_Q = \frac{Q^2}{2\log Q} + O\left(\frac{Q^2}{\log^2 Q}\right).$$

If (m,q)=1, then

$$\sum_{\chi = \chi \pmod{q}} \chi(m)\overline{\chi}(n) = \begin{cases} q - 1 & \text{if } m \equiv n \pmod{q}, \\ 0 & \text{if } m \not\equiv n \pmod{q}. \end{cases}$$

Therefore, for $m \neq n, m, n \leqslant r$,

$$\begin{split} \sum_{q \leqslant Q} \sum_{\substack{\chi = \chi \pmod{q} \\ \chi \neq \chi_0}} \chi(m) \overline{\chi}(n) &= \sum_{q \leqslant Q} \sum_{\substack{\chi = \chi \pmod{q} \\ q \mid (m-n)}} \chi(m) \overline{\chi}(n) + \sum_{\substack{q \leqslant Q}} \sum_{\substack{\chi = \chi \pmod{q} \\ q \nmid (m-n)}} \chi(m) \overline{\chi}(n) \\ &+ O\bigg(\frac{Q}{\log Q}\bigg) + O\bigg(\sum_{\substack{q \leqslant r}} q\bigg) = O\bigg(\frac{Q}{\log Q}\bigg). \end{split}$$

This together with (11) and (12) shows that, for $s \in R$, $|\tau| \leq c$ and any fixed $k \in \mathbb{Z}$,

$$w_Q(\tau, k) = \sum_{m=1}^{\infty} \frac{a_{\tau, k}(m)b_{\tau, k}(m)}{m^{2\sigma}} + o(1),$$
(13)

as $Q \to \infty$.

The assertion of Theorem 1 follows from (13) and well-known continuity theorem for characteristic transforms of probability measures on $(\mathbb{C}, \mathcal{B}(\mathbb{C}))$ [1].

References

- [1] A. Laurinčikas. Limit Theorems for the Riemann Zeta-Function. Kluwer, Dordrecht, 1996.
- [2] P.D.T.A. Elliott. On the distribution of the values of *L*-series in the half-plane $\sigma > \frac{1}{2}$. *Indaq. Math.*, **33**:222–234, 1971.
- [3] A. Kolupayeva and A. Laurinčikas. Value-distribution of twisted automorphic *L*-functions. *Lith. Math. J.*, **48**(2):203–211, 2008.
- [4] A. Kolupayeva and A. Laurinčikas. Value-distribution of twisted automorphic *L*-functions II. *Lith. Math. J.* (to appear).

REZIUMĖ

Normuotų parabolinių formų L-funkcijų sąsūkų reikšmių pasiskirstymas A. Kolupayeva

Straipsnyje įrodyta ribinė teorema tikimybinių matų silpno konvergavimo prasme normuotų parabolinių formų L-funkcijų sąsūkoms kompleksinėje plokštumoje.

Raktiniai žodžiai: Dirichlė charakteris; Hekės tikrinė forma; L-funkcijų sąsūka.