Uniform distribution in the *n*-dimensional torus

Gintautas Misevičius¹, Birutė Kryžienė²

¹ Vilnius University

Naugarduko 24, LT-03225 Vilnius

² Vilnius Gediminas Technical University

Saulėtekio 11, LT-10223 Vilnius

E-mail: gintas.misevicius@mif.vu.lt

Abstract. Limit distribution of endomorphisms of the *n*-dimensional torus is examined. The obtained result generalizes earlier results of the authors.

Keywords: uniform distribution, endomorphisms of *n*-dimensional torus.

1 Notations and results

Let $\Omega = \Omega_n$ be the *n*-dimensional torus

$$\mathbf{x} = (x_1, \dots, x_n), \quad 0 \leqslant x_i < 1,$$

with the coordinate-wise summation modulo 1. We define the rectangle $\Pi = [a,b] \times [c,d]$ and the functions $\varphi_i(x,y)$, $i=1,\ldots,n-2$, presenting the surfaces in the Euclidean three-dimensional space $\sigma_i = (x,y,\varphi_i(x,y)), \ i=1,\ldots,n-2$, with mixed partial derivatives on Π .

If Π' , $\Pi' \subset \Pi$, the measure $\mu_{\sigma_i}(\Pi')$ is expressed by

$$\mu_{\sigma_i}(\Pi') = \iint_{\Pi'} \sqrt{1 + (\varphi'_{ix})^2 + (\varphi'_{iy})^2} \, dx \, dy,$$

and μ_{σ_i} is absolutely continuous with respect to the Lebesgue measure on Π .

We examine the endomorphisms of the torus Ω defined by the non-singular matrices V with integer elements by

$$T\mathbf{x} = \mathbf{x}V \pmod{1}$$
.

In this case the vector $(x, y, \varphi_1(x, y), \dots, \varphi_{n-2}(x, y))$ defines the surface Γ in \mathbb{R}^n . Let

$$K_i = \frac{\varphi_{ix^2}'' \cdot \varphi_{iy^2}'' - (\varphi_{ixy}'')^2}{(1 + (\varphi_{ix}')^2 + (\varphi_{iy}')^2)^2}, \quad i = 1, \dots, n - 2,$$

 K_i being the Gaussian (total) curvature of components of the surface.

We suppose that the partial derivatives of the third order of functions $\varphi_i(x, y)$, $(x, y) \in \Pi$, exist.

Theorem 1. Let the surfaces σ_i have the positive curvatures K_i for all $(x,y) \in \Pi$. Let the characteristic polynomial of the matrix V with different real irrational roots is irreducible over the field of rational numbers. Then for almost all points $(x,y) \in \Pi$ the sequence

$$(x, y, \varphi_1(x, y), \dots, \varphi_{n-2}(x, y)) \cdot V^k, \quad k = 1, 2, \dots,$$

is uniformly distributed on the unit cube $\bar{\Omega}_n = [0,1]^n$ of the space \mathbf{R}^n .

In 1987 D. Moskvin [5] investigated mappings of the torus Ω_2 . Later these results were extended by the authors [2] to the class of special surfaces on Ω_4 . The above theorem generalizes these results to the case of n-2 surfaces on Ω_n .

2 Auxiliary statements

The proof of the theorem is based on Lemmas 1–5 proved in [4]. The proof also makes use of the Korobov function class (see [1]) $E_n^{\alpha}(c)$, $\alpha > 1$, c > 0, concerning Fourier coefficients of functions.

Lemma 1. Let $\varepsilon_N^1, \ldots, \varepsilon_N^n$ be real numbers such that $\delta = \delta_N = \max_i |\varepsilon_N^i| \to 0$, $N \to \infty$. Let $\varrho_1, \ldots, \varrho_n$ be algebraic numbers linearly independent over the field of rational numbers. Then for $f \in E_n^{\alpha}(c)$ the following quadrature formula

$$\frac{1}{N} \sum_{k=1}^{N} f(\left\{k\left(\varrho_{1} + \varepsilon_{N}^{1}\right)\right\}, \dots, \left\{k\left(\varrho_{n} + \varepsilon_{N}^{n}\right)\right\}) = \int_{\bar{\Omega}_{n}} f(\mathbf{x}) d\mathbf{x} + O\left(\frac{c}{N} + cN\delta\frac{\alpha - 1}{1 + \varepsilon}\right)$$

holds, where $\varepsilon > 0$ is an arbitrary fixed number, the constant in O depends on α , ε , n and arithmetic properties of $\varrho_1, \ldots, \varrho_n$.

We denote

$$a_i = \frac{\partial \varphi_i(x_0, y_0)}{\partial x}, \quad b_i = \frac{\partial \varphi_i(x_0, y_0)}{\partial y}, \quad i = 1, \dots, n - 2,$$

for the fixed point $(x_0, y_0) \in \Pi$ and

$$G_i(x,y) = \left(\frac{\partial \varphi_i}{\partial x} - a_i\right)^2 + \left(\frac{\partial \varphi_i}{\partial y} - b_i\right)^2, \quad i = 1, \dots, n-2.$$

Lemma 2. Let the total curvature K_i satisfy the condition $K_i \ge \xi_i > 0$, i = 1, ..., n-2. If $\max(|x-x_0|, |y-y_0|) \le \delta$ then there exist constants $c_i > 0$, such that

$$G_i(x,y) \geqslant c_i \min(|x-x_0|^2, |y-y_0|^2), \quad i=1,\ldots,n-2,$$

for certain (x_0, y_0) .

Lemma 3. Let a_i and b_i be such that

$$G_i(x,y) \geqslant d_i^2 > 0, \quad i = 1, \dots, n-2,$$

for $(x,y) \in \Pi$, d_i being fixed constants. There exists a quadratic net with lines parallel to coordinate axes and with sides of fixed length such that at least one of the assertions

$$\left| \frac{\partial \varphi_i}{\partial x} - a_i \right| \geqslant \frac{d_i}{2\sqrt{2}}, \qquad \left| \frac{\partial \varphi_i}{\partial y} - b_i \right| \geqslant \frac{d_i}{2\sqrt{2}}$$

holds for $(x,y) \neq (x_0,y_0)$.

Lemma 4. Let $\psi_1(t), \ldots, \psi_m(t)$ be any m times differentiable functions. Let $\mathbf{a} = (a_1, \ldots, a_m)$ denote a nonzero vector and the Wronskian $W[\psi_1, \ldots, \psi_m] > 0$ in the interval $t \in [a, b]$. If the function $g(t) = a_1\psi_1(t) + \cdots + a_m\psi_m(t)$ is equal to zero for $t = t_0$, then there exist λ_1 and λ_2 such that $|g(t)| > \lambda_1|t - t_0|^{m-1}$ for $|t - t_0| \leq \lambda_2$, $\lambda_1 > 0$, $\lambda_2 > 0$.

Lemma 5. Let θ be a real root of the characteristic polynomial of the matrix $V = \|a_{ik}\|$ and $\mathbf{w} = (w_1, \dots, w_n)$ be the eigenvector corresponding to θ . If the polynomial is irreducible over the field of rational numbers, then the relation

$$m_1w_1 + \dots + m_nw_n = 0$$

is possible if $m_i = 0$ for all i.

Proof of Theorem 1. We suppose that all eigenvalues θ_i of matrix V are positive, different and $\theta_1 > \theta_2 > \cdots > \theta_n$. The corresponding eigenvectors $\mathbf{w}_i = (w_{i1}, \dots, w_{in})$ form the base in \mathbf{R}^n . So any arbitrary vector $\mathbf{x} = (x_1, \dots, x_n)$ multiplied by V^m can be expressed as follows

$$\mathbf{x}V^m = \sum_{i=1}^n \left(\sum_{j=1}^n v_{ij} x_j\right) \theta_i^m \mathbf{w}_i,$$

 v_{ij} being real numbers completely defined by the matrix W and independent of numbers m.

We introduce the linear form $L_i(\mathbf{x}) = \sum_{j=1}^n v_{ij} x_j$. It follows from Lemma 5 that the inner product $\omega = \mathbf{w}_1 \cdot \mathbf{m} = \sum w_{1j} m_j \neq 0$ for $\mathbf{m} \neq \mathbf{0}$. Therefore for the function

$$f(x,y) = \frac{(x,y,\varphi_1(x,y),\dots,\varphi_{n-2}(x,y)) \cdot V^m \cdot \mathbf{m}}{\theta^m \cdot \mathbf{w}_1 \cdot \mathbf{m}}$$

we get the following representation

$$f(x,y) = L_1(x,y,\varphi_1(x,y),\dots,\varphi_{n-2}(x,y)) + \left(\frac{\theta_1}{\theta_{1+k}}\right)^m \frac{f_1(x,y)}{\omega},$$

where $f_1(x, y)$ is bounded on Π together with its mixed derivatives of the third order. Let us examine separately two cases:

- (1°) $v_{1j} \neq 0$ for some $j \geqslant 3$;
- (2°) $v_{1j} = 0 \text{ for all } j \ge 3.$

Suppose that $v_{1j_0} \neq 0$ (case 1°). Than there exists a vector **m** such that

$$\frac{\theta_{j_0}}{\theta_{j_0+k}} \frac{f_1(x,y)}{\omega} \leqslant \frac{1}{\ln m}, \quad m \geqslant 2.$$

This estimate gives expression for the total curvature K_f of the surface z = f(x, y) as follows:

$$K_f = \frac{(\sum v_{1k}\varphi_{kx^2}')(\sum v_{1k}\varphi_{ky^2}') - (\sum v_{1k}\varphi_{kxy}')^2}{(1 + (\sum v_{1k}\varphi_{kx}')^2 + (\sum v_{1k}\varphi_{ky}')^2)^2} + O\left(\frac{1}{\ln m}\right),$$

where the sums are taken over k, k = 3, ..., n - 2.

In this case the boundedness of derivatives φ'_{j_0x} and φ'_{j_0y} implies $K_f \geqslant c_1$ for sufficiently large m. So the rest of the proof is based on Lemmas 1–5 and coincide with that in [4].

In case 2° we use notations $a = v_{11}$, $b = v_{12}$ and examine the integral

$$J_m = \iint_{T'} \exp\left(2\pi i \left(\mathbf{m} \cdot \left(\boldsymbol{\xi} \cdot V^m\right)\right)\right) dx dy$$

with $\boldsymbol{\xi} = (x, y, \varphi_1(x, y), \dots, \varphi_{n-2}(x, y))$. The change of variables $u = x, v = \omega \theta_1^m(ax + by)$ implies that

$$J_m = \frac{1}{\omega b \theta_1^m} \int_0^1 dx \int_{v_1}^{v_2} \exp\left(2\pi i \left(v + \theta_1^m f_1\left(u, \frac{v - u_1}{ab\theta_1^m}\right)\right)\right) dv$$

with $v_1 = \omega \theta_1^m au$, $v_2 = \omega \theta_1^m bu$, and $u_1 = \frac{au}{b\theta_1^m}$.

The function $f_2(x) = \theta_2^m f_1(u, x)$ satisfies the Lipshitz condition $|f_2(x) - f_2(x')| \le \theta_2^m |x - x'|$ and the inner integral may be estimated by

$$\int_0^1 e^{2\pi i v} \left(\int_a^b \exp\left(2\pi i f_1(u, x)\right) dx + O\left(\frac{\theta_2^m}{\omega \theta_1^m}\right) \right) dv = O\left(\frac{1}{\omega} \left(\frac{\theta_2}{\theta_1}\right)^m\right).$$

Similar to the proof of Theorem in [4] we get the limit

$$\lim_{N \to \infty} \sum_{k=1}^{N} \exp\left(2\pi i \left(\mathbf{m} \cdot \boldsymbol{\xi} V^{k}\right)\right) = 0, \quad \mathbf{m} \neq \mathbf{0},$$

which proves the theorem. \Box

References

- [1] N.N. Korobov. Number-Theoretical Methods in Approximate Analysis. Nauka, Moscow, 1963 (in Russian).
- [2] B. Kryžienė and G. Misevičius. On the uniform distribution of endomorphisms of s-dimensional torus. Fizikos ir matematikos fakulteto seminaro darbai, Šiaulių universitetas, **6**:56–63, 2003.
- [3] L. Kuipers and H. Niederreiter. Uniform Distribution of Sequences. Wiley, New York, 1974.
- [4] G. Misevičius. Uniform distribution on the four-dimensional torus. I. *Liet. mat. rink.*, **40**(spec. num.):68–75, 2000. II, Liet. mat. rink., **41**(spec. num.):116–122 (2001).
- [5] D.A. Moskvin. Metric properties of ergodic endomorphisms of multidimensional torus. J. Sov. Math., **50**:1854–1876, 1987.

REZIUMĖ

Tolygus pasiskirstymas n-mačiame tore

G. Misevičius, B. Kryžienė

Tiriamas tam tikrų n-mačio toro endomorfizmų generuotų sekų ribinis pasiskirstymas. Gautas rezultatas apibendrina ankstesnius autorių rezultatus.

Raktiniai žodžiai: tolygus pasiskirstymas, n-mačio toro endomorfizmai.