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Abstract. The paper presents some numerical results on modelling a M/G/1/∞ queuing
system using Markov chain Monte Carlo (MCMC). This particular technique was chosen in
order to draw samples from the service time distribution from which it is assumed compli-
cated to sample random numbers. The software for experiments was created using C++
Builder development environment.
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Introduction

Consider a single channel queuing system depicted in Fig.1. λ represents the arrival
rate (number of arriving customers per time unit) and µ is the service rate (number
of customers being serviced per time unit). When the service time has a complicated
or unknown distribution, it is difficult (or even impossible) to draw samples from that
distribution. In real world this can present a situation, in which the process of arriving
customers is a Poisson process and the service time has an unknown distribution.

λ
µ

Fig. 1. M/G/1/∞ queuing system.

In this situation it is possible, for example, to construct a kernel density estimate
for service time distribution if there are some empirical data given. But the latter
estimate does not indicate how to sample from the service time distribution. Conse-
quently, the necessity for special sampling technique emerges. MCMC was chosen to
deal with this question.

1 MCMC and Metropolis–Hastings algorithm

If a service time density function π(·) is taken, Yi ∼ π(y), i = 1, n, have to be
generated to run the simulation of the queuing system. The idea of MCMC is to
construct a Markov chain {Xi}

∞
i=0 such that limi→∞ P (Xi = x) = π(x),

P (X0 = x) = g(x), (1)

P (y|x) = P (Xi+1 = y|Xi = x). (2)

http://www.mii.lt/LMR/
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Every Markov chain can be determined through an initial state (1) and a transition
kernel (2). It is known that the stationary distribution is unique if Markov chain is
ergodic:

π(y) =
∑

x∈Ω

π(x)P (y|x), ∀y ∈ Ω. (3)

Suppose the discrete stationary probabilities π(Xi) had been given. Then, hav-
ing ergodic and discrete Markov chain, the equation (3) holds. Total number of
(n− 1) equations and n(n− 1) unknown transition kernel probabilities are apparent.
Thus there exist an infinite number of transition kernels representing the stacionary
distribution π(x). Any of those transition kernels can be constructed and used for
generating Xi. One of the most widely used methods for constructing such Markov
chain is Metropolis–Hastings algorithm [2].

Metropolis–Hastings algorithm is implemented as follows. At first an optional
transition kernel Q(y|x) is chosen. Then there exists a probability α for chosen ker-
nel Q being equal to transition kernel P :

P (y|x) = Q(y|x)α(y|x), y 6= x. (4)

Considering the detailed balance condition of a time-homogeneous Markov chain
we have:

π(x)Q(y|x)α(y|x) = π(y)Q(x|y)α(x|y), ∀x 6= y. (5)

General solution for (5) is α(y|x) = r(x|y)π(y)Q(x|y). It is neccessary to have a
higher acceptance ratio when sampling random numbers [3], therefore by adjusting
r(x, y) it is shown that:

α(y|x) = min

(

1,
π(y)Q(x|y)

π(x)Q(y|x)

)

. (6)

Sampling of each Xi is performed in 4 steps. Firstly a candidate point Xi is
drawn from proposal distribution. Then the probability αi, that this point is also
distributed by the target density, is calculated. The next step is to draw ui ∼ U(0; 1)
and compare it to αi. Finally, Xi is accepted to the sample if ui < αi. Otherwise
Xi = Xi−1.

From (6) it is evident that π(x) can be determined up to a multiplicative con-
stant c, i.e., π(x) = c · h(x), where h(x) is a probability density function. Having
chosen Q(x|y) ≡ Q(x), an MCMC independence sampler is implemented. In that
case there is no neccesity for Markov chain to loose its memory because each Xi

depends on ratio π(·)
Q(·) and not on Xi−1.

2 Proposal selection and convergence of MCMC

Suppose we have a M/G/1/∞ queue in which service time X is a random num-
ber having lognormal distribution ft(x, µ, σ) with parameters µ = 0.5 and σ = 0.6.
Nevertheless this density could be sampled using normal distribution, say it is com-
plicated to sample from it. Here comes the necessity for special sampling technique.
A proposal density Q must be chosen now. There are many techniques to achieve
this, because the problem is to find probability distribution similar in shape to the



i

i

“LMD2010mtII_lan_val” — 2010/11/18 — 18:42 — page 287 — #3
i

i

i

i

i

i

MCMC approach to modelling queuing systems 287

Erlang approximation
Target density

x
9876543210

E
rl

(x
)

0.45
0.4

0.35
0.3

0.25
0.2

0.15
0.1

0.05
0

a) approximation

Erlang approximation
Target density
MCMC histogram

x
1086420

¶(
x)

0.45
0.4

0.35
0.3

0.25
0.2

0.15
0.1

0.05
0

b) MCMC results

Fig. 2. Using Erlang distribution as proposal density.

Table 1. MCMC convergence.

Sample size △te △tπ

500 0.0069 0.0340
1 000 0.0069 0.0258
5 000 0.0069 0.0106

10 000 0.0069 0.0095
50 000 0.0069 0.0057

500 000 0.0069 0.0050
1 000 000 0.0069 0.0046

target distribution. One way of achieving this is to take Erlang distribution fe(x, k, λ)
and compare its first 3 moments according to moments m1, m2 and m3 of the target
distribution.

b =
m3 +m1 − 3m2

m2 −m1
, k = b, λ = b

√

m2 −m1

b2
. (7)

By doing this, equations (7) for k and λ are obtained. Substituting these values
into fe(x, k, λ) make it target density approximation, that is, proposal density. Dif-
ficulties arises when performing such approximation. k calculates as a floating point
number and needs to be integer. There are cases when rounding k gives undesirable
results, in such cases approximation is more precise if 1 or 2 is added to k. The second
drawback is the non-versatility of this method. For particular distributions custom k

and λ are found, but approximation is undesirable.
In this particular case k = 2, λ = 0.882 and fe(x, k, λ) is quite similar in shape

to ft(x, µ, σ). Let us denote fπ(·) to be an empirical probability density obtained by
MCMC. The histogram, consisting of 100 bars, of sampled numbers Xi, was taken as
fπ(·). The differences between the target and the proposal densities or between the
target and empirical densities are evaluated as:

△te =
1

m

m
∑

j=1

(∣

∣ft(Xj)− fe(Xj)
∣

∣

)

, m < n. (8)

△tπ =
1

m

m
∑

j=1

(∣

∣ft(Xj)− fπ(Xj)
∣

∣

)

, m < n. (9)

According to Table 1, the convergence of MCMC independence sampler to the
target distribution is rather slow.

Liet. mat. rink. LMD darbai, 51:285–290, 2010.
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Fig. 3. Dependent MCMC process run.

3 Numerical model of M/G/1/∞ queuing system

Consider a queuing system with λ = 0.4 when service time distribution is ft(x, 0.5, 0.6).
The software created represents a queuing system run as a dynamic chain of objects
in computer memory. Each object has attributes just as a particular customer. The
first attribute is arrival time to the system. The second attribute is service time. The
time in queue, the time in system and etc are calculated recursively during modelling
process. Arrival time is generated using inverse cumulative exponential distribution,
although service times is said to have difficult distribution and, therefore, it is sampled
using MCMC. The approximation of target density with Erlang distribution function
was used as a technique for constructing a proposal density.

Although MCMC convergence to the target distribution is a matter-of-course, the
result of this sampling technique is still a Markov chain, i.e., numbers are dependent.
Fig. 3 shows that there are moments when Xi+1 = Xi. Before using these numbers
for modelling a queuing system it is essential to scramble the sample to prevent from
being dependent. A simpler way is to accept every second (third, etc.) random
number to the sample while running MCMC. The more ft(·) differs in shape from
the proposal density, the more numbers should be missed. If MCMC process run is
dependent, there is a probability for two or more service times in a row being equal
and relatively high. This results in the queue being much higher in length than the
average queue for some time. According to the experiments carried out, time and
queue characteristics were higher than the theoretical ones if dependency was not
eliminated from the sample.

Having generated a single process run of independent random values, the average
value of customers in queue or system and the mean value of time they were in
queue or system can be evaluated. It is advisable to generate several process runs
and calculate the average estimates. By doing this the dispersion of an estimate is
being reduced. The system’s empirical characteristics are compared to theoretical
ones in order to evaluate the accuracy of the model. M/G/1/∞ queuing system’s
theoretical characteristics are calculated in accordance with Little’s and Pollaczek-
Khinchin formulas [1]. Figs. 4 and 5 show the mean absolute value of the average
relative error of each of the queue’s characteristics for specified λ. These results were
obtained by modelling 50000 arriving customers for 10 times for each λ.

Any characteristic is calculated more precisely if λ is small. This dependence is
reasonable because the less customers enter the system, the shorter the queue is. But
the purpose of this experiment is to obtain a numerical value of what the average
error will be for this particular system. Considering this relationship, one can decide
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Fig. 4. The relative error of characteristics of the queue as the function of λ.
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Fig. 5. The relative error of characteristics of the queue as the function of λ.

whether modelling a system with particular parameters will give desirable results. It
is also noticeable from Figs. 4 and 5 that system’s characteristics are evaluated more
precise than the queue characteristics.

When modelling the system by usual techniques (e.g., inverse cumulative distri-
bution function), the precision of its characteristics has similar trends. In several
cases it is possible to achieve a smaller rate of error with MCMC, when random num-
bers sampled with MCMC have a better quality (e.g., if scrambled they can be less
dependent).

4 Conclusions

1. The higher the ratio λ
µ

, the higher the dispersion of estimated system charac-
teristics. The modelling also shows that errors for each system characteristics
are dependent (Figs. 4 and 5).

2. Heavier tails of the service time distribution leads to the higher dispersion of
characteristics modelled.

3. The results obtained enables us to choose how many arrivals of customers we
have to sample in order to get desired precision of system characteristics while
knowing its parameters.

4. When using MCMC for queuing systems or other type of logical aggregates, the
sample Xi ∼ π(x) must be scrambled to prevent Xi from being dependent.
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REZIUMĖ

Eilių sistemų modeliavimas MCMC metodu
M. Landauskas, E. Valakevičius

Straipsnyje nagrinėjama eilių sistema, kurios paraiškų atėjimo srautas yra puasoninis, o aptarnavimas
pasiskirstęs neeksponentiškai. Aptarnavimo srautui generuoti naudotas MCMC metodas. Siūlomo
skirstinio pasirinkimas atliekamas sulyginant tikslinio ir Erlango pasiskirstymų 3 pradinius momen-
tus. Sukurta programinė įranga ir tyrinėtos MCMC metodo subtilybės leido sumodeliuoti konkrečią
eilių sistemą. Modeliavimo metu pastebėtas ženklus paklaidų išaugimas, kai aptarnavimo ir paraiškų
atėjimo į sistemą srautai yra panašūs. Iš atliktų tyrimų darytina išvada, kad modeliuojant eilių sis-
temas verta modeliavimą kartoti daug kartų ir skaičiuoti sistemos charakteristikų vidurkius.

Raktiniai žodžiai: eilių sistema, Markovo grandinių Monte Karlo metodas.




