
i

i

“LMD2010log_norg” — 2010/11/18 — 18:23 — page 342 — #1
i

i

i

i

i

i

Lietuvos matematikos rinkinys. LMD darbai ISSN 0132-2818

51 tomas, 2010, 342–346 www.mii.lt/LMR/

Transformations of formulae of hybrid logic

Stanislovas Norgėla, Linas Petrauskas

Vilnius University, Faculty of Mathematics and Informatics

Naugarduko 24, LT-03225 Vilnius

E-mail: stasys.norgela@mif.vu.lt; linas.petrauskas@mif.stud.vu.lt

Abstract. This paper describes a procedure to transform formulae of hybrid logic H(@)
over transitive and reflexive frames into their clausal form.

Keywords: hybrid logic, clause.

Introduction

In propositional logic resolution calculus works on a set of clauses. However the well-
known methods for transforming propositional formulae to sets of clauses can not be
directly applied in modal nor hybrid logics – these non-classical logics need a different
approach.

In [4, 5] Mints et al describe transformation of formulae into their clausal form
for modal logics S4 and S5 . A modal literal is defined as formula of the form l, 2l
or 3l, where l is a propositional literal. A modal clause is a disjunction of modal
literals. In [4] author proves that for every modal logic formula F there exist clauses
D1, . . . , Dn and a propositional literal l such that sequent ⊢ F is derivable in sequent
calculus S4 (and, accordingly, S5 ) if and only if sequent 2D1, . . . ,2Dn, l ⊢ is deriv-
able. This transformation is the basis for the resolution calculus for modal logic S4

presented in [5]. F is a valid formula if and only if an empty clause is derivable from
the set {2D1, . . . ,2Dn, l}.

In this paper we aim to describe a similar transformation for formulae of hybrid
logic H(@) over transitive and reflexive frames. Throughout the paper we will refer to
this logic as HT R(@). In Section 1 we prove a theorem about subformula replacement
in formulae of HT R(@) and use this result to describe transformation of formulae in
Section 2. To prove things about HT R(@) we use the sequent calculus proposed by
Braüner in [3] along with two additional rules that make use of the reflexivity and
transitivity frame properties of the logic under discussion:

@a3a, Γ ⊢ ∆

Γ ⊢ ∆
(Refl)

@a3c, Γ ⊢ ∆

@a3b,@b3c, Γ ⊢ ∆
(Trans)

For an introduction of hybrid logic and it’s properties see [1] and [2].

1 Subformula replacement in HT R
(@)

It is true in propositional logic that if we replace subformula A of some formula F (A)
with an equivalent formula B, then F (A) is equivalent to F (B). To put it more briefly,

http://www.mii.lt/LMR/
mailto:stasys.norgela@mif.vu.lt; linas.petrauskas@mif.stud.vu.lt


i

i

“LMD2010log_norg” — 2010/11/18 — 18:23 — page 343 — #2
i

i

i

i

i

i

Transformations of formulae of hybrid logic 343

(A ≡ B) → (F (A) ≡ F (B)). However this statement does not hold in modal nor
hybrid logic. In [4] Mints proved that in modal logic S4 2(A ≡ B) → (F (A) ≡ F (B)).
We will prove a similar result for HT R(@) by first introducing a notion of a binding

nominal:

Definition 1. A binding nominal of a subformula A in formula F (A) is nominal i,
such that A is in the scope of operator @i, and of all such operators @i has the
maximal depth.

For instance, in formula @i(3A∧@j(2B → C)) subformula A is bound by nominal
i whereas subformulae B and C are bound by nominal j.

Theorem 1. Let F be a formula of HT R(@) and let A be some subformula of F

bound by nominal i. Then @i2(A ≡ B) implies F (A) ≡ F (B).

Proof. We will prove by constructing a derivation tree that the following sequent is
derivable in sequent calculus of HT R(@):

@i2
(

(A → B) ∧ (B → A)
)

⊢ @s

(

(F (A) → F (B)
)

∧
(

F (B) → F (A))
)

Here s is a new nominal. We will write Γ for @i2((A → B) ∧ (B → A)) in sequents
when it is not used by any rule in order to save space.

After applying rules (⊢ ∧) and (⊢→) in the first two steps the derivation tree
branches as follows:

. . .

Γ,@sF (A) ⊢ @sF (B)

Γ ⊢ @s(F (A) → F (B))
(⊢→)

. . .

Γ,@sF (B) ⊢ @sF (A)

Γ ⊢ @s(F (B) → F (A))
(⊢→)

Γ ⊢ @s((F (A) → F (B)) ∧ (F (B) → F (A)))
(⊢ ∧)

The two branches are symmetric with respect to interchanging A with B, therefore
we will only show derivation of the left branch. It is continued according to the main
operation of formulae in the sequent using these rules:

(¬) F = ¬G(A):
. . .

Γ,@sG(B) ⊢ @sG(A)

Γ ⊢ @s¬G(B),@sG(A)
(⊢ ¬)

Γ,@s¬G(A) ⊢ @s¬G(B)
(¬ ⊢)

(∧) F = (G(A) ∧H):

Γ,@sG(A),@sH ⊢ @sH

. . .

Γ,@sG(A) ⊢ @sG(B)

Γ,@sG(A),@sH ⊢ @sG(B)
(Simp ⊢)

Γ,@sG(A),@sH ⊢ @s(G(B) ∧H)
(⊢ ∧)

Γ,@s(G(A) ∧H) ⊢ @s(G(B) ∧H)
(∧ ⊢)

(2) F = 2G(A):
. . .

Γ,@tG(A) ⊢ @tG(B)

Γ,@s2G(A),@tG(A),@s3t ⊢ @tG(B)
(Simp ⊢)

Γ,@s2G(A),@s3t ⊢ @tG(B)
(2 ⊢)

Γ,@s2G(A) ⊢ @s2G(B)
(⊢ 2)

Liet. mat. rink. LMD darbai, 51:342–346, 2010.



i

i

“LMD2010log_norg” — 2010/11/18 — 18:23 — page 344 — #3
i

i

i

i

i

i

344 S. Norgėla, L. Petrauskas

(@) F = @tG(A):
. . .

Γ,@tG(A) ⊢ @tG(B)

Γ,@tG(A) ⊢ @s@tG(B)
(⊢:)

Γ,@s@tG(A) ⊢ @s@tG(B)
(:⊢)

We don’t give separate rules for ∨, → and 3 as G ∨ H ≡ ¬(¬G ∧ ¬H), G →
H ≡ ¬(G ∧ ¬H) and 3G ≡ ¬2¬G. The derivation is continued unambiguously by
applying one of these rules, and only a single branch is left open each time – the
one with subformulae A and B. Since subformula A is bound by nominal i we will
encounter operator @i and by definition of binding nominal this will be the last time
the (@) rule is applied. At that point all formulae in the sequent will have the @i

prefix and we will apply (Refl) rule to get:
. . .

@i2((A → B) ∧ (B → A)),@i3i,@iG(A) ⊢ @iG(B)

@i2((A → B) ∧ (B → A)),@iG(A) ⊢ @iG(B)
(Refl)

The sequent is now in the form Γ,@i3x,@xG(A) ⊢ @xG(B) and this form will be
maintained in the rest of the derivation. The rules for ¬ and ∧ do not change prefixes
of formulae and we will not encounter the @ operator. For the 2 operator we will use
a slightly different rule:

. . .

Γ,@i3y,@yG(A) ⊢ @yG(B)

Γ,@i3x,@yG(A),@x3y ⊢ @yG(B)
(Trans)

Γ,@i3x,@x2G(A),@x3y ⊢ @yG(B)
(2 ⊢, Simp)

Γ,@i3x,@x2G(A) ⊢ @x2G(B)
(⊢ 2)

Since formula only has a finite number of operators, subformula A (and B) will
be reached and we will complete the derivation as follows:

@xA ⊢ @xA @xB,@xA ⊢ @xB

@x(A → B),@xA ⊢ @xB
(→⊢)

@x((A → B) ∧ (B → A)),@xA ⊢ @xB
(∧ ⊢, Simp ⊢)

@i2((A → B) ∧ (B → A)),@i3x,@xA ⊢ @xB
(2 ⊢, Simp ⊢)

2 Transformation

In this section we describe how formulae of HT R(@) can be transformed to sets of
clauses using Theorem 1. A literal of hybrid logic HT R(@) is a formula of the form
l,2l,3l or @il where l is a proposition, a nominal or a negation of these, and i is a
nominal. A clause of hybrid logic is a formula of the form L, 2L or @iL where L is
a disjunction of hybrid literals.

Formula F is valid if and only if the sequent ⊢ @sF is derivable in sequent calculus
HT R(@). We will prove the following statement.

Theorem 2. Let F be a formula of HT R(@), A be some subformula of F bound by

nominal i, and p be a propositional variable not in F . Then Γ ⊢ @sF (A) is derivable

if and only if Γ,@i2(p ≡ A) ⊢ @sF (p) is derivable.



i

i

“LMD2010log_norg” — 2010/11/18 — 18:23 — page 345 — #4
i

i

i

i

i

i

Transformations of formulae of hybrid logic 345

Proof. Let us first consider the case that Γ ⊢ @sF (A) is derivable. Then we apply
the cut rule in the first step to get:

our premise

Γ ⊢ @sF (A)

derivable by theorem 1

@sF (A),@i2(p ≡ A) ⊢ @sF (p)

Γ,@i2(p ≡ A) ⊢ @sF (p)

Now let us say that Γ,@i2(p ≡ A) ⊢ @sF (p) is derivable. Then there exists a finite
derivation tree Υ . We can derive Γ ⊢ @sF (A) as follows:

derivation is trivial
⊢ @i2(A ≡ A)

Ψ

Γ,@i2(A ≡ A) ⊢ @sF (A)

Γ ⊢ @sF (A)

The subtree Ψ is derived from tree Υ by replacing p with formula A. Since we
are replacing a propositional variable (an atom formula) all steps and axioms of the
derivation remain correct.

A formula F of HT R(@) can be transformed to a set of clauses as follows. We
start with a sequent ⊢ @sF and continuously select a subformula Ai containing only
a single operation, replace it with a new propositional variable pi and add a new
premise @ni

2(pi ≡ Ai), where ni is the binding nominal of Ai. By Theorem 2 the
new sequent @ni

2(pi ≡ Ai) ⊢ @sF (pi) is derivable if and only if the original sequent
was. We repeat this step to replace every operation in F and derive a sequent of the
form:

@n1
2(p1 ≡ A1),@n2

2(p2 ≡ A2), . . . ,@nk
2(pk ≡ Ak),@s¬pk ⊢

Formulae of this sequent are transformed to clauses by converting the equivalences
into conjunctive normal form and using @i2(D

′ ∧D′′) ≡ @i2D
′ ∧@i2D

′′.
For example, formula 2p ∧@b3q is transformed to a set of clauses as follows.

⊢ @s(2p ∧@b3q)

@s2(r ≡ 2p) ⊢ @s(r ∧@b3q)

@s2(r ≡ 2p),@b2(t ≡ 3q) ⊢ @s(r ∧@bt)

@s2(r ≡ 2p),@b2(t ≡ 3q),@s2(u ≡ @bt) ⊢ @s(r ∧ u)

@s2(r ≡ 2p),@b2(t ≡ 3q),@s2(u ≡ @bt),@s2(v ≡ r ∧ u) ⊢ @sv

@s2(r ≡ 2p),@b2(t ≡ 3q),@s2(u ≡ @bt),@s2(v ≡ r ∧ u),@s¬v ⊢

{@s2(¬r ∨ 2p),@s2(r ∨3¬p),@b2(¬t ∨3q),@b2(t ∨ 2¬q),

@s2(¬u ∨@bt),@s2(u ∨@b¬t),@s2(¬v ∨ r),@s2(¬v ∨ u),

@s2(v ∨ ¬r ∨ ¬u),@s¬v}

Conclusions

The described transformation produces clauses of very simple form and can be used
to construct efficient resolution calculus for hybrid logic HT R(@).

Liet. mat. rink. LMD darbai, 51:342–346, 2010.



i

i

“LMD2010log_norg” — 2010/11/18 — 18:23 — page 346 — #5
i

i

i

i

i

i

346 S. Norgėla, L. Petrauskas

References

[1] C. Areces and B. ten Cate. Hybrid logics. In Handbook of Modal Logic, pp. 821–868.
Elsevier, 2006.

[2] P. Blackburn and J. Seligman. Hybrid languages. Journal of Logic, Language and Infor-

mation, 4:251–272, 1995.

[3] T. Braüner. Natural deduction for hybrid logic. J. Logic Comput., 14(3):329–353, 2004.

[4] G. Mints. Gentzen-type systems and resolution rule. Part I. Lecture Notes in Comput.

Sci., 417:198–231, 1988.

[5] G. Mints, V. Orevkov and T. Tammet. Transfer of sequent calculus strategies to resolu-
tion for s4. In Proof Theory and Modal Logic. Kluwer Academic Publishers, 1996.

REZIUMĖ

Hibridinės logikos formulių transformavimas
S. Norgėla, L. Petrauskas

Aprašytas tranzityvios ir refleksyvios hibridinės logikos H(@) formulių transformavimas į disjunktų
aibę.

Raktiniai žodžiai: hibridinė logika, disjunktas.


