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Abstract. In this paper we give exact bootstrap estimators for the parameters defining
one-term Edgeworth expansion of distribution function of finite population L-statistic and
compare these estimators with corresponding jackknife estimators. We also compare ‘true’
distribution of L-statistic with its normal approximation, Edgeworth expansion, empirical
Edgeworth expansion and bootstrap approximation.
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1 Introduction

Consider a population X = {z1,...,2y} of size N. We assume without loss of
generality that 1 < -+ < ay. Let X = {X3,..., X,,} be the simple random sample
of size n < N drawn without replacement from X and let Xi., < -+ < X,., denote
the order statistics of X. Counsider a linear combination L,, = L, (X) = % Z;.Lzl i Xjn
of the order statistics with coefficients determined by a weight function J: (0,1) — R
as follows ¢; = J(j/(n+1)),j=1,...,n.

In the case where random variables X7, ..., X,, are independent and identically dis-
tributed (i.i.d.) asymptotic properties of the distribution function F, (x) = P{S, <z}
of S, = (L, — p) /o were widely studied. Here u = EL,, and 02 = VarL,,. For results
on Berry—Esseen bounds we refer to [9, 13], for questions about Edgeworth expansion
and empirical Edgeworth expansions we refer to [10, 11, 2, 12].

For samples drawn without replacement from finite population the most general
results on one-term Edgeworth expansion and empirical Edgeworth expansions are
obtained in [5, 3]. Similarly as in the i.i.d. case (see [2, 12]), these works are devoted
to general symmetric asymptotically linear statistics. The analysis in these papers
is based on Hoeffding’s decomposition of symmetric statistics (see, e.g. [5]) L, =
EL, +U, +Us+ R, where U; = Z1<i<n g91(X;) and Us = Zl<i<j<n 92(X;, X;) are
the linear and quadratic parts of the decomposition and the remainder term R, is
negligible under appropriate smoothness conditions. It is shown in [5] that

(¢ —p)a+3k

Gul2) = B(x) - L2

20 (2) (1)

provides the one term Edgeworth expansion to the distribution function F,(z). Here
&%) (z) denotes the third derivative of the standard normal distribution function &(z),
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72 = Npg,p=n/N, q=1—pand

N
a1 a1
a=o; “N Y gia), k=0T Y gk a)g(z)g () (2)
k=1 () 1<k<I<N

and 0% = % chvﬂ g3(zr). Note that the parameters o, k and o defining G, depend
on the kernels ¢1(+) and ga(-,-) only. Usualy a, x and o; are unknown population
characteristics and one can not apply (1) directly. One way to overcome this problem
is to replace these parameters by their estimators thus obtaining empirical Edgeworth
expansion. In [3] it was done by using jackknife estimators. In the case of L-statistics
explicit expressions of the kernels ¢1(+) and ga(-, ) are available, see [7]. Using these
expressions one can also construct bootstrap estimators.

Here we study the bootstrap estimators of «, x and o;. We consider the finite
population bootstrap of [6]. In particular, we compare them (their efficiency) with
the jackknife estimators. Also, we aim to compare ‘true’ distribution function F),
(obtained by Monte Carlo (M—C) method) with its normal approximation, Edgeworth
expansion, two empirical Edgeworth expansions (with parameters estimated in two
ways mentioned) and bootstrap approximation of F,,. We note that the accuracy and
features of the latter approximation is not completely understood for L-statistics (on
bootstrap for U-statistics see [4]).

2 Estimators for parameters a, v and o

2.1 Bootstrap estimators

In order to estimate parameters defining Edgeworth expansion (1) we shall consider
bootstrap method proposed in [6]. Generally, let § = 6(X) be a characteristic of the
population X'. Assume that N = mn + ¢, where 0 < t < n. Given the sample X we
construct an empirical population X* by combining m copies of X and a simple ran-
dom sample without replacement Y = {Y7,...,Y:} of size ¢t from X. Then bootstrap
estimator of 6 is conditional expectation

0 =E(0(x) | X), (3)

i.e. expectation over all empirical populations conditional on X. Practically one
can obtain bootstrap estimates of parameters of interest by using M-C method (see,
e.g. [6]), but we shall give exact expressions of estimators &g, 4p and d15. Our
approach is the following. First we give bootstrap estimator (3) for any of population
X characteristics 0y, = ¢g1(zr), 1 < k < N and 0y = go(wp, 1), 1 < k <1 <N
(see Theorem 1 of [7]). Denote Aj.,, = X110 — Xjin, 1 < j < n— 1 and write
A= Tit1 — i, 1 <@ < N —1. Denote Hy pni(r) = (i) (g:;)/(];[) the probability that

a hypergeometric random variable with parameters N, n and 7 is equal to r. Denote
ui(k) = —n"ton (i) o5 epHn-2m-1,i-1(p—1) and vi(k, 1) = —n "1y (i) 35 o (cp—
Cp—1)HN-1n-2i—2(p — 2), where (i) = I{i > k} —i/N (here I{-} is the indicator
set function) and

i(i —1)/[(N — 1)(N - 2)] if1<i<k,
Gra(i) = —(i— (N —i = )/[(N = 1)(N -2)] ifk<i<l,
(N —i—1)(N—4)/[(N-1)(N—-2)] ifl<i<N.
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. N-1 N—1
Then we write 0, = >, u;(k) Ay and Oy = >°,2 vi(k,1) A

Proposition 1. We have

n—1 t
ek:ZZUmJJrs nt]( )Aj:na 1§k§N, (4)
7j=1 5=0
n—1 t
Ot =Y mjrs(k,DHnej(9)Ajm, 1<k <I<N. (5)
j=1 s=0
Proof. We prove formula (4). Consider empirical population X* = {z7,..., 2%},
where z7 < -+ < 7. Denote A7= =z}, —z;,i=1,...,N — 1. Introduce random
variables i;, j = 1,...,n — 1, where i; is a number from the set {1,..., N — 1} such

that A;‘j: Aj.,. Clearly, drawing Y without replacement from X we have P{i; =
mj+ s} = Hnuij(s), s=0,...,t for each j = 1,...,n — 1. Observe that gi(z}) =
Zf\i—ll ui(k) Af= Z?z_ll u;; (k) o7. Therefore (4) follows from E(u;, (k) 47| X) =
A, ZZ:O Umjts(K)Hn,t;(s), for j =1,...,n — 1. The proof of (5) is the same. O

Now we obtain bootstrap estimators &g, ~p and 615 of a, k and o1 by substitution
of (4) and (5) into (2).
2.2 Jackknife estimators

We define jackknife estimators for the parameters (2) as follows (cf. [12, 3]). For
I<i<nand1<k#I<ndenote V; =L — Ly and Wy = L — Ly — Ly + Ly,
where

S _ 1 - 1
L=5;L<]’>v Ley=—— >, Laay L:ﬁ >, Loay

1<y, j#i 1<i<jsn

and where Ly = L, 1(X\{X;}) = ﬁzy;ll J(j/n)X(z) , with order statistics
Xl(?T)’L—l < o< X which correspond to the set X\{X;}, and L¢; =

n—1ln—1°

Ln—2(X\{Xk, Xi}) = 15 Z?;f J(G/(n — 1))X](knl_)2 with order statistics Xl(:kr’lllQ <

- < X,(Lligm_Q, which correspond to the set X\{X}, X;}. Then jackknife estimators
of interest are

R sl . - 1
0'1]— ZVQ aJ:O—L?EZV;B’ Ii(]:O'IJST2— Z WlekW-

3 Approximations to distribution function F,

Replacing the moments (2) in (1) by their bootstrap and jackknife estimators given
in Section 2 we obtain two empirical Edgeworth expansions. Denote them by G, (x)
and G,,;(z) respectively.

We will now consider the bootstrap approximation to distribution function. Let A'*
be the empirical population defined in Section 2.1. We draw simple random sample
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without replacement X* (it is called resample) from X*. Define S; = (L, (X*) —
w(X*))/o(X*) and consider the bootstrap estimator 6 = P(S* < z | X) of 0 = F, (x).
In general the bootstrap distribution is difficult, if not impossible, to calculate, there-
fore we need to approximate it in order to apply it in our simulations. In that purpose
we employ the same M-C method as in [6] as follows. Given the sample X we con-
struct independently C' empirical populations X(*l), e X(*C) For eachc=1,...,C
we draw independently R resamples X(C 1) . ( R) from X( ) Then M-C approxi-

mation to 6 is F,p(z) = (CR)~ Zc—l Zr:l ]I{Sn;(c—l)R+r x}, where S; .,
is the value of S for X7, and X{_ ).

We note that parameters p = u(X) and 02 = 0?(X) can be expressed as follows.
Simple combinatorial calculations give u = n=! ZZ:I cpEX).0,

o2 =n"? {Z c2VarXp n+2 Z cprCov(Xpm, Xon) |,
p=1 1<p<r<n
where

N\ P& i1\ (N =i\ )
VarXpm<n> Z(p_1><n_p>:ci(EXpm), 1<p<n

=1

~.

and

cov e = (V) 5 () () (Ve

1<i<j<N
- EXp:nEX7':n7 I<p<r<n,

with BX,yo = ()7 520, () 0 1< p <

4 Simulation study and conclusions

L-statistics are applied for estimation of location and scale parameters of distribution
of X1, see, e.g. [8]. For more examples of L-statistics see, e.g. [1]. For our simulation
study we choose well known trimmed mean, for 0 < p; < p2 < 1 defined by the weight
function J(u) = (p2 — p1) " {p1 < u < pa}. Here we take p; = 0.25 and ps = 0.75.

We consider two different populations of size N = 60. The populations X'
and X®) were simulated from exponential £(0.5) and Cauchy C(2,1) distributions
respectively. In both cases the sample size is n = 24. Table 1 presents simulation
results for population X and Table 2 — for X2,

In each table we give ¢ = 0.05,0.1,0.9,0.95 quantiles of distribution functions Fj,,
@, (G, and empirical distribution functlons Gn B, Gn 7, Frp. Instead of single estimate
of quantile for the last three functions we give two characteristics: estimated values
of the expectation and standard error of empirical quantile, which were calculated
from 30 estimates of quantile (we draw independently 30 samples from X @), §=1, 2).
We note that ‘true’ distribution F,, by drawing independently 10® samples from X'(*)
i = 1,2 was obtained. Also we note that in order to obtain F,z by M-C simulations
(discussed in Section 3) we choose C'= 10 and R = 10°.
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Table 1. The case of population X1,

g=  0.05 0.10 0.90 0.95 a 024
Folg) —1.52 —1.23 1.32 1.75 Kk 0.49
&7 1(qg) —1.64 —1.28 1.28 1.64 " MSE
Gnl(g) —1.55 —1.24 1.33 1.77 ag  0.02
G p(@ —156 004 -125 0.01 133 0.02 176 0.06 &y 0.04

71(g) —158 0.07 —1.26 0.03 1.32 0.04 174 0.10 kg 0.05
oi(@) —1.53 0.06 -1.23 0.03 1.32 002 174 0.05 Ry 0.16
Table 2. The case of population X(2).

g=__ 0.05 0.10 0.90 0.95 a 015
Fil(q) —157 —1.22 1.28 1.71 x  0.31
o (q) —1.64 —1.28 1.28 1.64 T MSE
Gnl(g) -1.58 ~1.26 1.31 1.72 ag  0.09
G, (@) —1.62 012 -127 004 131 009 171 0.17 &y 007

S1g) -163 020 —1.29 0.10 1.35 0.19 1.73 0.26 kp 042
i(g)  —1.58 017 —1.22 0.09 1.26 0.06 1.67 0.15 Ry 1.46

In both tables we also give the values of the parameters a and k, and estimated

values of the mean square errors (MSEs) of their estimators ap, &y and kg, K.

Table 1 shows that approximations G,,, G, g, Gnj, F,p outperform @. Also, G,

is more stable compared to Gny. There is no leading approximation of F;, in Table 2,
but G, p also improves upon G, ;.
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REZIUME

Baigtiniy populiacijy L-statistiky savirankos, visrakcio ir EdZvorto aproksima-
cijos

A. Ciginas

Darbe tiriami baigtiniy populiacijy L-statistikos Edzvorto skleidinio parametry jvertiniai. Pateikiami
tikslus Siy parametry savirankos jvertiniai, kurie palyginami su atitinkamais visrakcio jvertiniais. Be
to, ,tikroji“ L-statistikos pasiskirstymo funkcija palyginama su jos normaliaja, Edzvorto, empirine
Edzvorto ir savirankos aproksimacijomis.

Raktiniai Zodziai: baigtiné populiacija, émimas be grazinimo, L-statistika, Hoeffding’o skleidinys,
savirankos metodas, visrakc¢io metodas, Edzvorto skleidinys.





