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Nonparametric test for spatial geometric anisotropy
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Abstract. Paper deals with a problem of testing isotropy against geometric anisotropy
for Gaussian spatial data. The original simple test statistic based on directional empirical
semivariograms is proposed. Under the assumption of independence of the classical semivar-
iogram estimators and for increasing domain asymptotics, the distribution of test statistics
is approximated by chi-squared distribution. The simulation experiments demonstrate the
efficacy of the proposed test.

Keywords: empirical semivariogram, anisotropy ratio, Gaussian random field.

Introduction

The assumption of spatial isotropy is often made in practice due to ease of compu-
tation and simpler interpretation. But in many applications spatial isotropy is not a
reasonable assumption. A conventional practice when checking for isotropy is to as-
sess plots of empirical semivariograms. However these graphical techniques are open
to interpretation. Guan et al. [5] have proposed formal approach to test isotropy
which is based on the asymptotic joint normality of empirical semivariograms for
multiple directions. An L2-consistent subsampling estimator for asymptotic covari-
ance matrix of the empirical semivariogram is used to construct a test statistic. But
the subsampling procedure takes a large amount of computing time.

In the present paper we propose the simpler test statistic in Gaussian case under
the assumption of independence of the classical semivariogram estimators.

1 Statistical models for spatial population

Suppose that spatial data are observations of a Gaussian random field (GRF) {Z(s):
s ∈ D ⊂ Rm} modeled by the equation

Z(s) = µ+ ε(s),

where µ constant mean and error term is zero-mean stationary GRF {ε(s): s ∈ D}.
The semivariogram of the GRF is defined by

γ(s− u) = var
{

Z(s)− Z(u)
}

/2, s, u ∈ D.

In many applications empirical evidence of directional effects are found in the
semivariogram structure. The simplest way of dealing with anisotropic random fields
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is to assume geometrical anisotropy. The geometric anisotropy means that models
of the semivariogram have the same nugget, the same sill but different ranges in to
perpendicular directions (see [5]). If one plots the directional ranges in 2D case they
would fall on the edge of an ellipse, where major and minor axes of ellipse correspond
to the largest and shortest ranges (amax and amin) of directional semivariograms.

Algebraically, it adds to the isotropic model two more parameters: the anisotropy
angle ϕ (angle made by major axis of ellipse and coordinate axis OY) and the
anisotropy ratio

λ =
amax

amin
> 1. (1)

Procedures of fitting of the geometric anisotropic semivariogram models to the en-
vironmental data can be easily realized by software system R package Gstat (see [1]).
The geometric anisotropy refers to semivariogram of the form

γ(h) = γ0
(

[Ah]
)

,

where γ0 is an isotropic semivariogram with the range amax and

A =

(

sin(ϕ) cos(ϕ)
−λ cos(ϕ) λ sin(ϕ)

)

.

2 Empirical semivariogram and test for isotropy

In this paper we restrict our attention to the nuggetless model of covariance i.e.,

C(h) = σ2r(h),

where σ2 is the variance (sill) and r(h) is the spatial correlation function.
Denote by Sn = {si ∈ D; i = 1, . . . , n} the set of locations where GRF {Z(s): s ∈

D} is observed. The classical estimator of semivariogram is the method of moments
estimator

γ̂(h) =
1

2|N(h)|
∑

(si,sj)∈N(h)

{

Z(si)− Z(sj)
}2

. (2)

Here N(h) denotes all pairs (si, sj) for which si, sj ∈ Sn, si − sj = h and |N(h)|
denotes the cardinality of the set N(h).

To test the hypothesis of isotropy, we choose the lag set Λ including spatial lags
h1, h2, . . . , hK in the direction of major axis of ellipse and spatial lags hK+1, hK+2, . . . ,
h2K perpendicular to that direction. Assume that |hi| = |hi+K |, i = 1, . . . ,K.

The hypothesis of isotropy is expressed as

H0: γ(hi) = γ(hi+K), i = 1, . . . ,K.

Rejecting this hypothesis means accepting geometric anisotropy (hypothesis H1).
Set Γ ′ = (γ(h1), . . . , γ(h2K)). Let Γ̂ = (γ̂(h1), . . . , γ̂(h2K)) be the vector of semi-

variogram estimators (2) obtained over Sn.
In what follows we establish the asymptotic properties of Γ̂ under an increasing

domain asymptotics, in which minimum distance between sampling points is bounded
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away from zero and thus spatial domain of observation is unbounded. Under some
regularity conditions, Guan et al. [3] proved that

√
n(Γ̂ − Γ )

D−→ N2K(0, ΣΓ ) as n → ∞,

where ΣΓ is the asymptotic covariance matrix with elements of complex structure.

Under the hypothesis of isotropy, there exists a full row rank matrix R such that
RΓ = 0 [4]. Then under the hypothesis of isotropy it follows from continuous mapping
theorem that

n(RΓ̂ )′(RΣΓR
′)−1(RΓ̂ )

D−→ χ2
r as n → ∞, (3)

where r denotes the row rank of R.

Following Cressie [2] we have

var(Γ̂ ) ∼= diag
(

2γ2(h1)/
∣

∣N(h1)
∣

∣, . . . , 2γ2(h2K)/
∣

∣N(h2K)
∣

∣

)

,

where the approximation yields only little loss in estimation efficiency especially in
the case of independence of the classical semivariogram estimators for different spatial
lags.

We propose the following estimator of ΣΓ

Σ̂Γ = n diag
(

2γ̂2(h1)/
∣

∣N(h1)
∣

∣, . . . , 2γ̂2(h2K)/
∣

∣N(h2K)
∣

∣

)

,

and replace it in the statistic specified in (3) and form the test statistic

T̂ = n(RΓ̂ )′(RΣ̂ΓR
′)−1(RΓ̂ ). (4)

If H0 is true, then chi-squared approximation for the distribution of the test statis-
tic T̂ is proposed.

So we suggest that an approximate size-p test for isotropy is to reject H0 if T̂ >
χ2
r,p, where χ2

r,p is p-critical value of a chi-squared distribution with r degrees of

freedom. Note that if H1 is true, then the test statistic T̂ can be approximated by
linear combination of noncentral chi-squared random variables.

3 Simulation results

As an example we consider the case with D being integer regular 2-dimensional lattice.
Set h′ = (hx, hy) for each h ∈ D. Simulations are done on 10 × 10 square grid. So
the sample size is n = 121. We generated realizations from zero-mean, second-order
stationary Gaussian random field. The case of geometric anisotropic spatial Gaussian
correlation function r(h) = exp{−(h2

x + λ2h2
y)/α

2} is considered. Here α denotes

the range parameter. For greater interpretability we consider the situation when the
anisotropy angle ϕ is equal π

2 and K = 2, with |h1| = |h3| = 1, |h2| = |h4| = 2.

Set

R =

(

1 0 −1 0
0 1 0 −1

)

.

Liet. mat. rink. LMD darbai, 51:397–401, 2010.
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Table 1. Empirical powers of test for simulated data.

α

λ 1 4 7 10 13 16

M = 150
2 0.30 0.57 0.69 0.80 0.81 0.83
4 0.40 0.53 0.69 0.83 0.81 0.85
6 0.50 0.53 0.75 0.79 0.79 0.78
8 0.20 0.59 0.76 0.70 0.75 0.87

10 0.70 0.53 0.69 0.73 0.80 0.84

M = 300
2 0.60 0.56 0.68 0.76 0.81 0.82
4 0.40 0.48 0.72 0.77 0.77 0.84
6 0.60 0.58 0.71 0.76 0.77 0.84
8 0.50 0.53 0.67 0.76 0.78 0.82

10 0.50 0.51 0.69 0.78 0.80 0.78

M = 600
2 0.50 0.57 0.71 0.76 0.80 0.83
4 0.30 0.54 0.71 0.75 0.78 0.81
6 0.40 0.53 0.73 0.76 0.82 0.83
8 0.50 0.54 0.72 0.76 0.80 0.81

10 0.50 0.52 0.67 0.79 0.80 0.84

Then the test statistic specified in (4) is

T̂ =
1

2

2
∑

i=1

(

γ̂(hi)− γ̂(hi+2)
)2/(

γ̂2(hi)
/∣

∣N(hi)
∣

∣+ γ̂2(hi+2)
/∣

∣N(hi+2)
∣

∣

)

.

Its approximate distribution is the χ2
r distribution. As a performance measure of

the proposed test statistic we considered the empirical power of test (frequency of
rejecting H0 for simulated geometrically anisotropic Gaussian data) with significance
level p = 0.05. For various values of the anisotropy ratio λ specified in (1) and the
range parameters α, simulations with three different numbers of replications M are
performed. Empirical powers of test for three simulated data sets with M = 150, 300,
60 are presented in Table 1.

Table 1 shows that empirical power of test increases with increasing of range
parameter, but empirical power is not influenced by the anisotropy ratio. So we
propose to use our test statistic for the particular cases of geometrically anisotropic
spatial Gaussian data.
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REZIUMĖ

Neparametrinis testas erdvinių duomenų geometrinei anizotropijai nustatyti.
K. Dučinskas, L. Dreižienė

Straipsnyje pasiūlytas paprastas testas erdvinių Gauso duomenų geometrinei anizotropijai nustatyti.
Testo statistikos skirstinys aproksimuojamas χ2

r skirstiniu. Pavyzdyje parodytas didelis šio testo
galingumas stipriai koreliuotiems Gauso duomenims.

Raktiniai žodžiai: empirinė semivariograma, anizotropijos santykis, atsitiktinis Gauso laukas.
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