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Abstract. In spatial classification it is usually assumed that features observations given
labels are independently distributed. We have retracted this assumption by proposing sta-
tionary Gaussian random field model for features observations. The label are assumed to
follow Disrete Random Field (DRF) model. Formula for exact error rate based on Bayes
discriminant function (BDF) is derived. In the case of partial parametric uncertainty (mean
parameters and variance are unknown), the approximation of the expected error rate asso-
ciated with plug-in BDF is also derived. The dependence of considered error rates on the
values of range and clustering parameters is investigated numerically for training locations
being second-order neighbors to location of observation to be classified.
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Introduction

Spatial supervised classification is a problem of classifying locations (sites) into several
categories by learning the features observation and the adjacency relationships with
training sample. Switzer [5] was the first to treat classification of spatial data. It is
usually assumed that feature observations are independent conditional on class labels
(conditional independence) and normally distributed. This approach is widely used
in image classification [3].

In the case of complete parametric certainty, the formula of exact error rate due
to Bayes classification rule (BCR) under described assumptions is derived by Nishii
and Eguchi [4]. In this paper we have derived the above formula by retracting the
assumption of conditional independence. The observation of features to be classified
is assumed to be dependent on a training sample.

The stationary Gaussian Random Fields (GRF) model for features and DRF model
for class labels are considered. In the case of partial parametric uncertainty, the
original approximation of the expected error rate associated with plug-in BDF is
proposed. This is the generalization of the similar approximations derived in the case
of training sample with fixed sampling design and fixed labels [1]. The numerical
analysis of derived exact error rate and proposed approximation of the expected error
rate is carried out in the case of isotropic exponential spatial correlation function
among features observations. For the second-order neighborhood system, the influence
of the some statistical model parameters on the values of considered error rates is
numerically evaluated.

http://www.mii.lt/LMR/
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1 The main concepts and definitions

The main objective of this paper is to classify the feature observations modeled by
stationary Gaussian random field {Z(s): s ∈ D ⊂ R2}.

The marginal model of observation Z(s) in class Ωl is

Z(s) = µl + ε(s),

where µl is constant mean and the error term is generated by zero-mean stationary
Gaussian random field {ε(s): s ∈ D} with covariance function defined by the following
model for all s, u ∈ D

cov
{

ε(s), ε(u)
}

= σ2r(s− u),

where r(s− u) is the known spatial correlation function and σ2 is variance as a scale
parameter.

Let L = {1, 2} be a label set. A label of location s ∈ D associated with Z(s) is a
random variable Y (s) taking values in L. Let Sn = {si ∈ D; i = 1, . . . , n} be a set of
training locations. Set Y = (Y (s1), . . . , Y (sn))

′ and Z = (Z(s1), . . . , Z(sn))
′ and call

them labels vector and features vector, respectively.
Thus, the vector T ′ = (Z ′, Y ′) constitutes the training sample.
Suppose that the event {T = t} is equivalent to the event {Z = z} ∩ {Y = y},

where t, z, y are the realizations of the corresponding random vectors.
Denote by R the matrix of spatial correlations among components of Z. Suppose

that Sn is fixed, but the labels are distributed randomly on it.
So for Y = y, Sn is partitioned into the union of two disjoint subsets, i.e., Sn =

S
(1)
y ∪ S

(2)
y , where S(l) is the subset of Sn that contains nl locations with labels equal

l, l = 1, 2 (n1 + n2 = n).
Then the model of vector Z for given Y = y is

Z = Xyµ+ En (1)

where Xy is the n× 2 design matrix, µ′ = (µ1, µ2) and E is the n-vector of random
errors that has multivariate Gaussian distribution Nn(0, σ

2R).
Consider the problem of classification (estimation of Y (s0)) of the feature obser-

vation Z0 = Z(s0), s0 ∈ D, s0 /∈ Sn with given training sample T .
Denote by r0 the vector of spatial correlations between Z0 and Z given in (1). So

we have to deal with conditional Gaussian distribution of Z0 given T = t with means

µ0
lt = E

(

Z0|T = t, Y (s0) = l
)

= µl + α′
0(Z −Xyµ),

l = 1, 2 and variance

σ2
0t = V

(

Z0|T = t, Y (s0) = l
)

= σ2R0n

where α′
0 = r′0R

−1, R0n = 1− r′0R
−1r0.

2 Error rates of spatial classification

At the beginning we specify the DRF model for class labels.
Denote by {π(y) = P (Y = y)} the prior distribution of the labels vector Y .

Liet. mat. rink. LMD darbai, 51:426–430, 2010.
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Proposition 1 [Assumption]. The conditional distribution of Y (s0) given T = t
depends only on Y = y, i.e., πl(y) = P (Y (s0) = l|T = t), l = 1, 2.

Under the assumption that the classes are completely specified the Bayes discrim-
inant function (BDF) [2] minimizing the probability of misclassification is formed by
the logarithm of ratio of conditional densities described above. We shall call that
situation the case of complete parametric certainty.

Then BDF for classification of Z0 given T = t is

Wt(Z0) =

(

Z0 −
1

2

(

µ0
1t − µ0

2t

)

)′
(

µ0
1t − µ0

2t

)

/σ2
0t + γ(y)

where γ(y) = ln(π1(y)/π2(y)).
The conditional Mahalanobis distance given T = t is

∆0n =
∣

∣

(

µ0
1t − µ0

2t

)∣

∣/σ0t = ∆0/
√

R0n,

where ∆0 = |µ1 − µ2|/σ is the marginal Mahalanobis distance. It is obvious that ∆0n

depends on Sn but does not depend on t.
Then conditional Bayes error rate (for given T = t) of classifying Z0 by BDF

Wt(Z0) is

P0(t) =

2
∑

l=1

πl(y)Φ
(

−∆0n/2 + (−1)lγ(y)/∆0n

)

,

where Φ(�) is the standard normal distribution function.
The exact Bayes error rate for Wt(Z0) is

ET

(

P0(T )
)

=
∑

kyl

2
∑

l=1

π(y)πl(y)Φ
(

−∆0n/2 + (−1)lγ(y)/∆0n

)

,

where ET denotes the expectation with respect to T distribution and k differences
between classes.

Suppose that means {µl} and σ2 are unknown and need to be estimated from
training sample T .

Let µ̂ and σ̂2 be the estimates of µ and σ2, based on T = t. Denote the three com-
ponent vector of parameters by Ψ ′ = (µ, σ2) and denote the vector of their estimates
by Ψ̂ ′ = (µ̂′, σ̂2).

The plug – in BDF (PBDF)is obtained by replacing the parameters in BDF with
their estimates based on T = t. Then PBDF to the classification problem specified
above is

Wt(Z0, Ψ̂) =

(

Z0 −
1

2

(

µ̂0
1t + µ̂0

2t

)

)

(

µ̂0
1t − µ̂0

2t

)

/σ̂2
0t + γ(y) (2)

where µ̂0
lt = E(Z0|T = t; Y (s0) = l) = µl + α′

0(zn −Xyµ̂), l = 1, 2 and

σ̂2
0t = V

(

Z0|T = t; Y (s0) = l
)

= σ̂2R0n.

In the considered case the actual error rate [1] for Wt(Z0; Ψ̂) is specified by

Pt(Ψ̂ ) =
2

∑

l=1

πl(y)Φ
(

Q̂l(t)
)

, (3)
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and for l = 1, 2

Q̂l(t) = (−1)l
((

µ0
lt −

1

2

(

µ̂0
1t + µ̂0

2t

)

)

sgn
(

µ̂0
1t − µ̂0

2t

)

+ γ(y)σ̂2
0t

/∣

∣µ̂0
1t − µ̂0

2t

∣

∣

)

/σ0t.

(4)

Definition 1. The expectation of the actual error rate with respect to the joint dis-
tribution of T designated as ET {P (Ψ̂)}, is called the expected error rate (EER).

The EER is useful in providing a guide to the performance of PBDF before it
is actually formed from training sample.Hence the EER for the considered problem
of Z0 classification by PBDF is

ET

(

PT (Ψ̂)
)

= ET

{

2
∑

l=1

πl(Y )Φ
(

Q̂l(T )
)

}

. (5)

Set H = (1, 1)′, G = (1,−1)′. In the present paper we consider increasing domain
asymptotic scheme for spatial sampling.

Lemma 1. Suppose that observation Z0 is to be classified by PBDF specified in (2)
and let the assumptions of theorem [1] hold.

Then the asymptotic approximation of EER defined in (5) is

AEP0 =
∑

y

2
∑

l=1

π(y)πl(y)Φ
(

−∆0n/2 + (−1)lγ(y)/∆0n

)

+
∑

y

∑

l

πl(y)π(y)φ
(

Q1(y)
)(

C(y) + 2γ2(y)/(n− 2)
)

/∆0n (6)

where ϕ(�) denotes the standard normal density function and C(y) = Λ′RµΛ∆
2
0n/ρ0,

Λ = X ′
yα0 −H/2 + γ(y)G/∆2

0n.

Proof. The proof of lemma is based on Taylor series expansion about points µ = µ̂
and σ̂2 = σ2 of PT (Ψ̂) presented in (3), (4).

Then taking the expectation of the main term of Taylor described above we com-
plete the proof of lemma. For details see the proof of theorem [1].

3 Numerical example and conclusions

Here we analyze numerically the dependence of exact error rate on some statistical
model parameters. Suppose D is 2-dimensional rectangular lattice with unit scaling,
S0 = (0, 0) and S8 is the set of second-order neighbors to S0.

We consider the case of model (3) with constant means and isotropic exponential
spatial correlation function given by r(h) = exp{−|h|/α}, where α is the range pa-
rameter. Denote by ρ the clustering parameter or granularity [4]. The non-negative
parameter ρ gives the degree of spatial dependency of the class labels.

Set Yi = Y (si), yi = y(si), i = 1, . . . , n.
Assume that conditional distribution of Y (s0) given Y = y is

π1(y) = P
(

Y (s0) = 1|Y = y
)

= 1/
(

1 + exp
(

ρ(1 − 2n1/n)
))

,

Liet. mat. rink. LMD darbai, 51:426–430, 2010.
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Table 1. Values of AEP0 for ∆0 = 0.2 in the upper cell and ∆0 = 3
in the bottom cell, π4 = 0.5, π3 = π5 = 0.15, π2 = π6 = 0.1.

ρ \ α 0.5 1 2 3

0 0.45957 0.45132 0.43569 0.42269
0.07479 0.03813 0.01009 0.00257

0.4 0.45462 0.44710 0.43274 0.42078
0.07687 0.03933 0.01051 0.00269

0.8 0.44256 0.43633 0.42479 0.41542
0.08006 0.04124 0.01113 0.00287

1.2 0.42771 0.42242 0.41396 0.40820
0.08459 0.04403 0.01200 0.00311

1.6 0.41229 0.40761 0.40222 0.40078
0.09066 0.04782 0.01315 0.00341

2 0.39718 0.39291 0.39078 0.39447
0.09846 0.05271 0.01460 0.00380

and prior distribution of class labels is π(y) = πn1
/Cn1

8 , where n1 = #(i: yi = 1, i =
1, . . . , n) and πn1

= P (
∑n

i=1 1{Yi = 1} = n1), n1 = 0, . . . , n.
So the results of numerical analysis give us arguments to state that the greater

clustering of class labels and stronger spatial correlation between feature observations
ensures the smaller spatial classification error.
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REZIUMĖ

Atsitiktinių Gauso laukų stebinių klasifikavimo klaidos
L. Stabingienė ir K. Dučinskas

Erdvinėje klasifikacijoje paprastai yra daroma prielaida, kad požymių stebiniai yra sąlyginai neprik-
lausomi. Mes atmetame šią prielaidą Gauso atsitiktinio lauko modelio požymių stebiniams. Yra da-
roma prielaida, kad visų stebinių žymių modelis yra diskretus atsitiktinis laukas. Tikslios klai-
dos tikimtbės formulė yra gauta Bajeso diskriminantinei funkcijai (BDF) pilnai žinomų parametrų
atveju. Nepilnai žinomų parametrų atveju (vidurkių parametrai ir dispersija yra nežinomi), yra
gauta nauja tikėtinos klaidos tikimybės aproksimacija, susijusi su įterpta Bajeso diskriminantine
funkcija (PBDF). Minėtų klaidos tikimybių priklausomybė nuo statistinių parametrų reikšmių ir ap-
tartų modelių yra ištirta skaitiškai.

Raktiniai žodžiai: klasifikavimas su mokymu, Gauso atsitiktiniai laukai, erdvinė koreliacija.




