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Abstract. We give a sufficient condition for the hamiltonicity of the uniform random inter-
section graph Gn,m,d. It is a graph on n vertices, where each vertex is assigned d keys drawn
independently at random from a given set of m keys, and where any two vertices establish an
edge whenever they share at least one common key. We show that with probability tending
to 1 the graph Gn,m,d has a Hamilton cycle provided that n = 2−1m(lnm+ ln lnm+ω(m))
with some ω(m) → +∞ as m → ∞.
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1 Introduction and results

A random intersection graph (RIG) on a vertex set V = {v1, . . . , vn} is defined by
the collection of random subsets S1, . . . , Sn of an auxiliary set W . Any two vertices
vi, vj are connected by an edge in RIG whenever the sets S(vi) and S(vj) intersect.
Elements of W are called attributes (or keys). In particular, one can interpret Si =
S(vi) as the attribute set characterizing the vertex vi. The random sets are usually
assumed to be independent, but not necessarily identically distributed.

The random intersection graph, where each vertex collects its attribute set by
inserting attributes independently at random with a given probability was introduced
by Karoński, Scheinerman and Singer-Cohen [13] and Singer-Cohen [17]. A more
general model was considered by Godehard and Jaworski [11], see also Shang [16].
Random intersection graphs have received considerable attention in recent literature
([1, 2, 4, 5, 3, 6, 7, 8, 12, 18], etc.)

In the present note we consider a particular class of RIG, where the sets S1, . . . , Sn

are of the same size, say d. In particular, every Si is uniformly distributed in the
class of all subsets of W of size d. Given m (the size of the auxiliary set W ), n (the
number of vertices), and d such a graph is denoted Gn,m,d and called the uniform RIG.
Interest to uniform RIG was motivated by the paper of Eshenauer and Gligor [9] who
suggested a random key predistribution scheme, based on uniform RIG, that ensures
the security of links in a wireless sensor network. Afterwards, the connectivity and
component evolution of uniform RIG was shown in [2] and [5] (see also references
therein). Recent papers [14] and [15] address the hamiltonicity and independence
number.

We study the hamiltonicity of Gn,m,d in the case where d is arbitrary, but remains
fixed as n,m → ∞. Observe that such a random graph has statistically dependent
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edges. Indeed, for any three vertices, say x, y, z we have

lim inf
m→∞

P(x ∼ y, x ∼ z, v ∼ z | x ∼ y, x ∼ z) > d−1 > 0, (1)

while the edge probability p′d = p′d(n) = P(x ∼ y) = d2m−1 + O(d4m−2) tends to 0
as m → ∞. Here x ∼ y denotes the adjacency relation. In what follows we say that
an event holds with a high probability (whp for short) if its probability tends to 1.

Lemma 1 below gives a sufficient condition for the hamiltonicity of Gn,m,d in
terms of n and m (n should be sufficiently larger than m). A necessary condition is
formulated in Lemma 2. These conditions refer to the same order

n = Θ(m lnm), (2)

but the constants do not match. In particular, we show that for n > (0.5 + ε)m lnm
the graph Gn,m,d is Hamiltonian whp, while for n < (d−2−ε)m lnm the graph Gn,m,d

has no Hamilton cycle whp as m → ∞. Here ε > 0 is arbitrarily small.

Lemma 1. Let d > 2 be an integer. Assume that for some ω(m) → +∞ we have as

m → ∞
n = 2−1m

(

lnm+ ln lnm+ ω(m)
)

. (3)

Then whp Gn,m,d is Hamiltonian as n → ∞.

Lemma 2. Let d > 2 be an integer. Assume that for some ε ∈ (0, d−2) we have as

m → ∞
n 6 (d−2 − ε)m lnm. (4)

Then the following statements hold true:

(i) whp Gn,m,d has a vertex of degree at most 1,

(ii) whp Gn,m,d has no Hamilton cycle.

Let us compare the Hamiltonicity threshold of the classical Erdős-Rényi graph
G(n, p), where edges are inserted independently with probability p, with our results
for Gn,m,d. Recall that G(n, p) has a Hamilton cycle with probability tending to 1
whenever

p = p(n) = n−1
(

ln(n) + ln ln(n) + ω(n)
)

(5)

for some ω(n) → +∞, as n → ∞, see, e.g. [6]. From Lemmas 1 and 2 we conclude
that Gn,m,d is Hamiltonian whp for p′2 = (2−1d2 + ε)n−1 lnn, and Gn,m,d has no
Hamilton cycle whp for p′2 = (1 − ε)n−1 lnn. Here ε > 0 is arbitrarily small.

Our sufficient condition (3) provides an improvement upon the corresponding con-
dition shown in Theorem 2 of [14], n > (1 + ε)

(

m

d

)

ln
((

m

d

))

.

2 Proofs

Here we prove Lemmas 1 and 2. An auxiliary result used in the proof of Lemma 1 is
stated separately in Lemma 3 at the end of the section.

Proof of Lemma 1. Given Si, let si ⊂ Si be a random subset of size 2. Let G∗

be a random multi-graph on the vertex set W = {w1, . . . , wm} with the edge set
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{s1, . . . , sn}. Let n′ be the number of distinct edges si and let G′ ⊂ G∗ be the
subgraph containing all but distinct edges. Observe that given n′, the graph G′

has the same distribution as the uniform Erdős-Rényi graph on m vertices having n′

random edges (where the set of edges is uniformly distributed in the class of all subsets
of size n′ of the set of all possible pairs of vertices). It is known (see, e.g., [6]) that
such an Erdős-Rényi graph contains a Hamilton cycle whp provided that

n′
> 2−1m

(

lnm+ ln lnm+ ω(m)
)

(6)

for some ω(m) → ∞ as m → ∞. It follows from (3), by Lemma 3, that (6) holds
with a high probability. Therefore, whp the graph G′ is Hamiltonian.

Now the lemma follows from the simple observation that the hamiltonicity of G′

implies the hamiltonicity of G = Gn,m,d. Indeed, let si1 , . . . , sim be (the edges of)
a Hamilton cycle of G′. The corresponding vertices vi1 , . . . , vim build a cycle, say C,
in G. Let V ′ denote the set of vertices outside C. Split V ′ = V1 ∪ V2 ∪ · · · ∪ Vm into
non-interecting classes of vertices such that, for every j, all vertices of Vj share the
attribute sij ∩ sij+1

(we define sim+1
:= si1). In particular vertices from Vj belong to

a clique of G attached to the cycle C and containing vertices vij and vij+1
. For all

vertices of G are covered by the cycle C and several cliques attached to its edges we
can extend C to a Hamilton cycle. ⊓⊔

Proof of Lemma 2. Note that (i) implies (ii). We need to prove (i). In the proof
we apply the folloving inequalities from [4]. Let S1 and S2 be two independent ran-
dom sets uniformly distributed in the class of subsets of {1, . . . ,m} of sizes x and y
respectively. Then as m → ∞

P
(

|S1 ∩ S2| > 1
)

= xym−1 +O
(

x2y2m−2
)

. (7)

Given v ∈ V , let Iv denote the indicator of the event {d(v) 6 1}. Hence, Iv = 1
whenever d(v) 6 1. Here d(v) denotes the degree of v (the number of neighbours of v
in Gn,m,d). Let X =

∑

v∈V Iv count vertices of degree at most 1. Note that (i) is
equivalent to the limit P(X > 0) → 1 as n → ∞. In the proof of this limit we show
that

lim
n

EX = +∞ and
√
VarX = o(EX) (8)

and then derive the limit P(X > 0) → 1 from (8), by Chebyshev’s inequality.
Here we give the proof of the first inequality of (8). The proof of the second bound

of (8) is similar. Write EX = na, where a = EIv. Denote κ = d2nm−1. Let us show
that uniformly in n,m → ∞ satisfying (4)

a = (1 + κ + r)e−κ+r. (9)

Here r is the remainder term of order r = O(m−1 + nm−2). We have

a = P
(

d(v) = 0
)

+P
(

d(v) = 1
)

= αn−1 + (n− 1)(1− α)αn−2,

where α =
(

m−d
d

)(

m
d

)−1
is the probability that two given vertices are non-adjacent.

Invoking the expansion α = 1− d2m−1 + O(m−2), see (7), we obtain (9)

a =
(

n(1− α) + 2α− 1
)

e(n−2) lnα = (1 + κ + r)e−κ+r. (10)

Now a simple caclulation shows that EX = na → +∞ for n,m satisfying (4). ⊓⊔

Liet. mat. rink. LMD darbai, 51:443–447, 2010.
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Lemma 3. Let s1, s2, . . . , sn be independent random subsets of W = {w1, . . . , wm}
such that, for every i, si is uniformly distributed in the class of subsets of W of

size 2. Assume that

n = 2−1m
(

lnm+ ln lnm+ ω(m)
)

(11)

for some ω(m) → +∞ satisfying ω(m) = o(ln lnm) as m → ∞. Then for any c > 0,

the number n′ of distinct subsets among s1, . . . , sn satisfies as m → ∞

P
(

n′
> 2−1m

(

lnm+ ln lnm+ ω(m)− c
))

= 1− o(1) (12)

Proof. Denote A(c) = 2−1m
(

lnm + ln lnm+ ω(m)− c
)

and write A =: A(0), A′ :=
A(c).

Assume that sets s1, s2, . . . are drawn independently at random one after another
and Ni counts the number of distinct sets among s1, . . . , si. As long as we have
Ni−1 < A′ we write Ii = 1 in the case where si differs from all previously drawn sets
s1, . . . , si−1, and write Ii = 0 otherwise. After the number of distinct sets reaches A′

(i.e., for i satisfying Ni > A′) we put Ii = 1 in either case. Denote X = I1 + · · ·+ In.
We have n′ > A′ whenever X > A′. Note that for every i, we have

P(Ii = 1) > 1− A′ − 1
(

m
2

) =: p′.

A coupling with a binomial random variable Y ∼ Bin(n, p′) gives P(X 6 A′) 6

P(Y 6 A′). Next we apply Chernoff’s inequality to the latter probability,

P(Y 6 A′) 6 exp
{

− 2−1(np′ −A′)2/(np′)
}

.

A simple calculation shows, that (np′ −A′)2/(np′) → +∞ as m → ∞. Therefore, we
obtain

P(n′
> A′) = P(X > A′) > P(Y > A′) = 1− o(1)

thus completing the proof.
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REZIUMĖ

Apie tolygių atsitiktinių sankirtų grafų hamiltoniškumą
M. Bloznelis, I. Radavičius

Darbe nagrinėjamas Hamiltono ciklo egzistavimas tolygiame atsitiktiniame sankirtų grafe Gn,m,d.
Tai grafas, turintis n viršnių. Kiekviena viršnė iš duotos m raktų aibės atsitiktinai ir nepriklausomai
išsirenka d raktų rinkinį. Dvi viršnės jungiamos briauna, jei jos turi bent vieną bendrą raktą.
Darbe parodoma, jog su tikimybe, artėjančia prie 1, grafas Gn,m,d turi Hamiltono ciklą, jeigu n =
2−1m(lnm+ ln lnm+ ω(m)), kur ω(m) → +∞, kai m → ∞.

Raktiniai žodžiai: atsitiktinis grafas, sankirtų grafas, Hamiltono ciklas, klasterizavimas.
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