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Abstract. Two-runs statistic is approximated by various compound Poisson distributions
and second order asymptotic expansions. Estimates of lower bounds are obtained for the
uniform Kolmogorov and local metrics.
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Runs statistic is one of the most thoroughly studied examples when dealing with
Poisson and compound Poisson approximations for sums of dependent indicators,
see [2, 3, 6]; and the references therein. However, to the best of our knowledge, all
known estimates are upper bound estimates. In this paper, we obtain lower bound
estimates. We consider the simplest (and probably most popular) case of two-runs
statistic. Let &, 7 = 0,1,2,...,n be independent identically distributed indicator
variables, P(§1 = 1) = p, P(&=0)=1—p. Let n; =&&—1, S=m+m2+ -+,
¢1(t) = Eexp{ity } and

E exp{itSi}
wr(t) = EexplitSr1] (k=2,3,...,n).

It is obvious, that n; are 1-dependent random variables. We denote the distribu-
tion and characteristic function of S by F' and a (t), respectively.

Let I, denote the distribution concentrated at real a and set I = Iy. To make
expressions shorter we also set U = I} — I, z = U(t) = ¢ — 1. In what follows,
let V and M be two finite signed measures concentrated on integers Z. Products
and powers of V and M are understood in the convolution sense, i.e, VM{A} =
Yoo V{A—k}M{k} for a set A C Z; further MY = I. The total variation norm,
uniform Kolmogorov norm and the local norm of M are denoted by

oo

Ml = (MK}, IMlzitelg}M{(foovk]}}, IIMlloo:itégW{kH,

k=—oc0
respectively. Let M(t) (t € R) be the Fourier transform of M. The exponential of M

is given by

eM = exp{M} = Z % M*, em}(t) = exp{M(t)}.
k=0
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Let us define measures used for approximations of F:

G = eXp{’71U},
Gy :=exp {nU + U}, G = exp {1 U +2U? +13U°}.

Here

np®(2 — 3p) — 2p*(1 —
m = np, V2 = cal p)2 P( p)7

- np(3 — 12p +10p?) — 6p* (1 — p)(1 — 2p)
; .

We denote by C positive absolute constants. The letter 6 stands for any complex
or real number satisfying |#] < 1. The values of C, 6 can vary from line to line, or
even within the same line. Sometimes to avoid possible ambiguity, the C' are supplied
with indices.

We can formulate our results.

Theorem 1. Let p < 1/5, n > 3. Then
|F — G1| > Cymin (np3,p)7
2 1
|IF— Gills = Camin <np3, ﬁ)
Theorem 2. Let p < 1/5, n > 3. Then

Y

|F — Gy (I +72U2)| > (3 min (np4,p2

~—

4

HF7G1(1+72U2) > Cymin | np~,

I

7N

Sl

Theorem 3. Let p < 1/5, n > 3. Then

|F' — G| > C5 min (np47 P

1
|IF — G2alleo = Cs min (np4, ﬁ)

For better understanding of the accuracy of our results we formulate some upper
bound estimates. If p < 1/5, n > 3, then

HF - Gl” < 07 min (np37p)7 (1)
|F = G1(I +~U?)|| < Csmin (np*, p?), (2)
|F — Ga|| < Comin (np‘*,%). (3)

The estimate (1) is valid for all p and n and follows from Theorem 1 in [1]. The
estimate (2) was proved in [5]. In principle, the estimate (3) with explicit constants
and under weaker assumptions was obtained in [2]. However, in [2], the edge effect
was not taken into account (it was assumed that 7; depends on 7,,). The estimate
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with the edge effect taken into account was obtained in [5]. Since |M| < || M|, we
see, that, in general, upper bound estimates are of the right order. Similar conclusion
can be drawn for the estimates in the local metric.

For the proof of Theorems we need auxiliary results. Lemmas 1 and 2 were proved
in [5]. For the proof Heinrich’s [4] method was used.

Lemma 1. Let p < 1/5, k= 3,4,.... Then

P, P
Inp; = p?z — 3,22 + §z3 + COp°|2|*,

3 o 5 _

P (2 3p)zg+p (7Tp — 6)

9 3

P’2-3p) 5  p'(3—12p+10p?
5~ T 3

Lemma 2. Let p < 1/5. Then, for all t,

22+ C@p5|z|4,

Ingpy = p?z +

23 4+ COp°|2| .

In g, = p?z —

. 6np? t
a] < Con{ -2 1),

G3(t)‘ < C’exp{—np2 sin? %} (4)
Lemma 3. Let M be concentrated on Z, o € R, b > 1. Then,

|M| > c} /OO et2/2M<;—)>eim dt}, (5)

1Moo > %‘ /jo et2/2M<£>em dt‘. (6)

The estimates (5) and (6) remain valid if e=t/2 is replaced by te=t"/2.

Lemma’s proof can be found in [6]. The assumption p < 1/5 is determined by the
method of proof.

All proofs are similar. Therefore, in a more detailed way, we prove Theorem 3
only.

Proof of Theorem 3. We assumed that p < 1/5 and n > 3. Therefore,

4 2 4
np*(3 —12p+ 10p np
ol = s > PO 2RI np @

Applying Lemmas 1 and 2 we obtain

E(t) — G‘g(t)| < ‘mF(t) - 1Dég(t)| < Cnplz|* < CnpPlt)?, (8)

We have

Ga(t) = Ga(t) (14 732%)| = [Ga(t) (exp {732°} — 1 — 732°)]
Gao(t)y225 /0 (1 —7)exp {T"}/323} dr

< Cr3l]° < Cn?p™t°, 9)
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and

E(t) = Ga(t) = Galt ) ( t)° +G2( )73 (2% = (it)°)
+ ( () (1 +732%)) + (F(t) — Gs(t)). (10)
Let b = hmax(1,/np), h > 1. Then applying (7) and (10) we obtain

‘ /_O; te "2 (E(t) — Ga(t)) (é) it dt‘

o0 42 N o 73t3
> ‘/_Oote 2@y (t/b)e ”‘*th
11 L A
[mt /(b4 R o e o K.

[t | [ e

- Cll

_ bl

np n?p np
> Chq e Cis 06 Cie s
4 4
np Cirnp
2> Cra—5

b5 h*max(1, /np)?

wt (| Cw
" h3 max(1, n3/2p3) h

>%m1n P 1—@
~ B3 \/ﬁ h )

It suffices to take h = 2C7 and apply Lemma 3 with a = np?.

Proof of Theorem 1 is similar to the proof of Theorem 3. One needs to replace G3,
G and 322 by Ga, G and 222, respectively.

Proof of Theorem 2 is also similar to the proof of Theorem 3. One needs to replace
G3, Gy and 432° by Ga, G1 and 1 + 4222, Instead (10) we have to use

(F(t) — G1(t)(1 +722%))
- (él(t)@) - (ég(t) = G'l(t)(l + 222 + @)) — (F(t) = Ga(t)).
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REZIUME

Puasono aproksimacijy apatiniai réziai dviejuy nariy serijy statistikoms

J. Petrauskiené, V. Cekanavicius

Dviejy nariy serijy statistika aproksimuojama jvairiais sudétiniais Puasono skirstiniais ir trumpais
asimptotiniais skleidiniais. Gauti tolygus Kolmogorovo ir lokalus aproksimacijos tikslumo iverciai is
apacios.

Raktiniai ZodzZiai: m-priklausomi atsitiktiniai dydziai, dviejuy nariy serijuy statistika, sudétinis Pua-
sono skirstinys, tolygi Kolmogorovo metrika, lokali metrika.





