Some estimates of the normal approximation for mixture of Poisson and gamma random variables*

Jonas Kazys Sunklodas

Institute of Mathematics and Informatics Akademijos 4, LT-08663, Vilnius

E-mail: sunkl@ktl.mii.lt

Abstract. In the paper, we present the upper bound of L_p norms Δ_p of the order $(a_1 + a_2)/(\mathbb{D}Z)^{-1/2}$ for all $1 \leq p \leq \infty$, of the normal approximation for a standardized random variable $(Z - \mathbb{E}Z)/\sqrt{\mathbb{D}Z}$, where the random variable $Z = a_1X + a_2Y$, $a_1 + a_2 = 1$, $a_i \geq 0$, i = 1, 2, the random variable X is distributed by the Poisson distribution with the parameter $\lambda > 0$, and the random variable Y by the standard gamma distribution $\Gamma(\alpha, 0, 1)$ with the parameter $\alpha > 0$.

Keywords: normal approximation, L_p norms, Poisson distribution, gamma distribution, mixture of Poisson and gamma r.v.

1 Introduction

Let the random variable (r.v.) X be distributed by the Poisson distribution with the parameter $\lambda > 0$ (for short, $X \sim \mathcal{P}(\lambda)$),

$$\mathbb{P}{X = k} = \frac{\lambda^k}{k!}e^{-\lambda}, \quad k = 0, 1, 2, \dots,$$

and the r.v. Y by the standard gamma distribution with the parameter $\alpha > 0$ (for short, $Y \sim \Gamma(\alpha, 0, 1)$), i.e., its probability density function has the form [1, p. 180]

$$f_Y(x) = \frac{1}{\Gamma(\alpha)} x^{\alpha - 1} e^{-x} \cdot 1_{(0, \infty)}(x),$$

where $\Gamma(\alpha)$ is the gamma function $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx$, and 1_A is the indicator of event A.

Assume that the r.v.'s X and Y are independent and consider a mixture of r.v.

$$Z = a_1 X + a_2 Y$$
, where $a_1 + a_2 = 1$, $a_i \ge 0$, $i = 1, 2$.

^{*} The research was partially supported by the Lithuanian State Science and Studies Foundation, grant No. T-70/09.

Denote

$$\Delta(x) = \mathbb{P}\{\xi < x\} - \Phi(x), \qquad \xi = \frac{Z - \mathbb{E}Z}{\sqrt{\mathbb{D}Z}}, \qquad \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^{2}/2} du,$$

$$\Delta_{p} = \begin{cases} (\int_{-\infty}^{\infty} |\Delta(x)|^{p} dx)^{1/p} & \text{if } 1 \leq p < \infty, \\ \sup_{x \in \mathbb{R}} |\Delta(x)| & \text{if } p = \infty. \end{cases}$$

Here and in what follows \mathbb{R} is the real line.

It is easy to proove that the distribution function of the standardized Poisson r.v. $\frac{X - \mathbb{E}X}{\sqrt{\mathbb{D}X}}$, where $X \sim \mathcal{P}(\lambda)$, and the standardized gamma r.v. $\frac{Y - \mathbb{E}Y}{\sqrt{\mathbb{D}Y}}$, where $Y \sim \Gamma(\alpha, 0, 1)$, as $\mathbb{D}X \to \infty$ and $\mathbb{D}Y \to \infty$ respectively, converges to the standard normal distribution function $\Phi(x)$, i.e.,

$$\lim_{\mathbb{D}X \to \infty} \mathbb{P}\left\{\frac{X - \mathbb{E}X}{\sqrt{\mathbb{D}X}} < x\right\} = \lim_{\mathbb{D}Y \to \infty} \mathbb{P}\left\{\frac{Y - \mathbb{E}Y}{\sqrt{\mathbb{D}Y}} < x\right\} = \Phi(x), \quad x \in \mathbb{R}.$$
 (1)

In this paper we are interested in the rate of convergence of the L_p norm Δ_p for all $1 \leq p \leq \infty$. However, in this case, the author has not found any published results on the rates of convergence of the norms Δ_p for all $1 \leq p \leq \infty$. We have obtained here the upper bound of the norms Δ_p of the order $(a_1 + a_2)/\sqrt{a_1^2 \lambda + a_2^2 \alpha}$ for all $1 \leq p \leq \infty$ with explicit constants (see Theorem 1). Obviously, these constants are not the best possible, but that was not the main author's aim.

To obtain the upper estimates of the norm Δ_{∞} (for uniform metric) and the norm Δ_1 (for L_1), we formed linear differential equation from the characteristic function of the standardized r.v. $\xi = \frac{Z - \mathbb{E}Z}{\sqrt{\mathbb{D}Z}} = \frac{a_1(X - \lambda) + a_2(Y - \alpha)}{\sqrt{a_1^2 \lambda + a_2^2 \alpha}}$ by virtue of which we succeeded in getting proper estimates of differences: between this characteristic function and the normal one, and between their derivatives as well. The chosen proofs of estimates for the L_p norms are elementary.

Particular cases $a_1=0$ (for a standardized gamma r.v. $\xi=\frac{Y-\alpha}{\sqrt{\alpha}}$) and $a_2=0$ (for a standardized Poisson r.v. $\xi=\frac{X-\lambda}{\sqrt{\lambda}}$) are investigated in the paper [9].

2 Main and auxiliary results

Now we formulate the main result.

Theorem 1. Let the r.v. X be distributed by the Poisson distribution with the parameter $\lambda > 0$, the r.v. Y by the standard gamma distribution with the parameter $\alpha > 0$, and r.v.'s X and Y be independent. Let

$$Z = a_1 X + a_2 Y$$
, where $a_1 + a_2 = 1$, $a_i \ge 0$, $i = 1, 2$.

Then, for all $1 \leq p \leq \infty$,

$$\Delta_{\infty} \leqslant \frac{7a_1 + 18a_2}{\sqrt{a_1^2 \lambda + a_2^2 \alpha}},\tag{2}$$

$$\Delta_p \leqslant \frac{71a_1 + 189a_2}{\sqrt{a_1^2 \lambda + a_2^2 \alpha}}.\tag{3}$$

Recall that $\mathbb{E}X = \mathbb{D}X = \lambda$ for the r.v. $X \sim \mathcal{P}(\lambda)$ and $\mathbb{E}Y = \mathbb{D}Y = \alpha$ for the r.v. $Y \sim \Gamma(\alpha, 0, 1)$.

Denote the characteristic function of the standardized r.v. $\xi = \frac{Z - \mathbb{E}Z}{\sqrt{\mathbb{D}Z}}$ by $f(t) = \mathbb{E}e^{it\xi}$, and the derivative of the characteristic function f(t) with respect to t by f'(t).

To prove Theorem 1, we use an auxiliary result, Lemma 2, on the behaviour of the functions f(t) and f'(t).

Denote by θ_1 , θ_2 , θ_3 , θ_4 complex functions such that all $|\theta_i| \leq 1$.

The following statement is valid.

Lemma 1. Let the r.v. X be distributed by the Poisson distribution with the parameter $\lambda > 0$, the r.v. Y by the standard gamma distribution with the parameter $\alpha > 0$, and r.v.'s X and Y be independent. Let

$$Z = a_1 X + a_2 Y$$
, where $a_1 + a_2 = 1$, $a_i \ge 0$, $i = 1, 2$.

Denote

$$b_1 = \frac{a_1}{\sqrt{a_1^2 \lambda + a_2^2 \alpha}}, \qquad b_2 = \frac{a_2}{\sqrt{a_1^2 \lambda + a_2^2 \alpha}}, \qquad c = 1.5b_1 + 4b_2.$$

Then the characteristic function f(t) of the standardized r.v. $\frac{Z-\mathbb{E}Z}{\sqrt{\mathbb{D}Z}}$ satisfies the following homogeneous linear differential equation for all $|t| \leqslant \frac{1}{2b_2}$:

$$f'(t) = \left(-t + \theta_1 c t^2\right) f(t). \tag{4}$$

Moreover, for all $|t| \leqslant \frac{1}{c}$

$$|f(t) - e^{-t^2/2}| \le \frac{1}{3}c|t|^3e^{-t^2/6},$$
 (5)

$$|f'(t) - (e^{-t^2/2})'| \le ct^2 e^{-t^2/2} + \frac{1}{3}c(1+c|t|)t^4 e^{-t^2/6}.$$
 (6)

Proof. The characteristic functions of independent r.v.'s $X - \mathbb{E}X$ and $Y - \mathbb{E}Y$ are as follows:

$$\mathbb{E}e^{it(X-\mathbb{E}X)} = \exp\left\{\lambda(e^{it} - 1 - it)\right\}, \qquad \mathbb{E}e^{it(Y-\mathbb{E}Y)} = \frac{e^{-it\alpha}}{(1 - it)^{\alpha}}.$$

Therefore

$$f(t) = \mathbb{E}e^{i(tb_1)(X-\lambda)} \cdot \mathbb{E}e^{i(tb_2)(Y-\alpha)} = \frac{\exp\{\lambda(e^{itb_1} - 1 - itb_1) - itb_2\alpha\}}{(1 - itb_2)^{\alpha}}.$$

Taking the derivatives with respect to t on both sides of this expression, we get that for all $t \in \mathbb{R}$

$$f'(t) = \frac{(\lambda b_1 - it\lambda b_1 b_2)(1 - e^{itb_1}) - it\alpha b_2^2}{tb_2 + i} \cdot f(t) = fr \cdot f(t), \tag{7}$$

where fr denotes the fraction in (7). Since $|e^{ix} - 1 - ix| \leq \frac{1}{2}x^2$ for all $x \in \mathbb{R}$, and $\lambda b_1^2 + \alpha b_2^2 = 1$, we can rewrite the fraction in (7) in the form

$$fr = -t + \frac{t^2b_2 - \lambda t^2b_1^2(b_2 + \theta_2\frac{1}{2}b_1) + \theta_3\frac{1}{2}\lambda t^3b_1^3b_2}{tb_2 + i} = -t + K,$$
 (8)

where K denotes the fraction in (8). Using the fact that $\lambda b_1^2 \leqslant 1$ and $|tb_2 + i| \geqslant \frac{1}{2}$ for all $|t| \leqslant \frac{1}{2b_2}$, we have that

$$|K| \leqslant \left(\frac{3}{2}b_1 + 4b_2\right)t^2. \tag{9}$$

Substituting (9) into (8), and afterwards substituting (8) into (7), we get (4).

Now, solving the linear differential equation (4) with the boundary condition f(0) = 1, we get that the characteristic function f(t) may be written in the form

$$f(t) = \exp\left\{-\frac{t^2}{2} + \theta_4 \frac{1}{3}c|t|^3\right\}$$
 (10)

for all $|t| \leqslant \frac{1}{2b_2}$.

To estimate the difference $|f(t)-e^{-t^2/2}|$, we use the well-known fact that $|e^z-1| \le |z|e^{|z|}$ for all complex numbers z. We obtain that for all $|t| \le \frac{1}{c}$

$$|f(t) - e^{-t^2/2}| \le \frac{1}{3}c|t|^3e^{-t^2/6},$$

i.e., (5) is proved.

Substituting (5) into (4), we get (6).

Lemma 1 is proved.

3 Proof of Theorem 1

Estimation of Δ_{∞} . To estimate the uniform metric Δ_{∞} , we use the smoothing inequality of Esséen [5, p. 297] with $T = \frac{1}{c} > 0$ and (5), and obtain that

$$\Delta_{\infty} \leqslant \frac{2}{\pi} \int_{0}^{T} \left| \frac{f(t) - e^{-t^{2}/2}}{t} \right| dt + \frac{24}{\pi\sqrt{2\pi}} \frac{1}{T} \leqslant \left(\frac{12}{\pi} \sqrt{\frac{2}{\pi}} + \sqrt{\frac{6}{\pi}} \right) c. \tag{11}$$

Estimation of Δ_1 . To estimate the L_1 norm Δ_1 , we use the following inequality with $T = \frac{1}{c} \ge 1$ ([4, p. 25] and [6, p. 395]):

$$\int_{-\infty}^{\infty} \left| \mathbb{P}\{\xi < x\} - \Phi(x) \right| dx \leq 3 \left(\int_{0}^{T} \left| \frac{f(t) - e^{-t^{2}/2}}{t} \right|^{2} dt \right)^{1/2} + \sqrt{2} \left(\int_{0}^{T} \left| \frac{d}{dt} \left(\frac{f(t) - e^{-t^{2}/2}}{t} \right) \right|^{2} dt \right)^{1/2} + \frac{8\pi}{T}$$

$$\leq 3I_{1} + 2(I_{2} + I_{3}) + \frac{8\pi}{T}, \tag{12}$$

where

$$I_1^2 = \int_0^T \left| \frac{f(t) - e^{-t^2/2}}{t} \right|^2 dt, \qquad I_2^2 = \int_0^T \left| \frac{f'(t) - (e^{-t^2/2})'}{t} \right|^2 dt,$$

$$I_3^2 = \int_0^T \left| \frac{f(t) - e^{-t^2/2}}{t^2} \right|^2 dt.$$

Using inequalities (5) and (6), we estimate the quantities I_1 , I_2 , and I_3 from (12) with $T = \frac{1}{c} \ge (0.03)^{-1}$, and obtain that

$$I_1 \leqslant \frac{1}{2} \sqrt{\frac{3}{2} \sqrt{3\pi}} \cdot c, \qquad I_2 \leqslant \sqrt{25.551 \sqrt{3\pi} + \frac{3}{4} \sqrt{\pi}} \cdot c, \qquad I_3 \leqslant \frac{1}{2} \sqrt{\frac{1}{3} \sqrt{3\pi}} \cdot c.$$

Substituting these estimates into (12), we have that, for $T = \frac{1}{c} \ge (0.03)^{-1}$,

$$\Delta_1 \leqslant 47.226c. \tag{13}$$

The proof of Theorem 1 for $T = \frac{1}{c} \ge (0.03)^{-1}$ now follows from (11) and (13), because

$$\Delta_p \leqslant \Delta_{\infty}^{(p-1)/p} \Delta_1^{1/p}$$

for all $1 \leqslant p < \infty$. The proof as $T = \frac{1}{c} < (0.03)^{-1}$ is trivial, since $\Delta_p \leqslant \sqrt{2}$ for all $1 \leqslant p \leqslant \infty$ (for $\Delta_1 \leqslant \sqrt{2}$, see [3, p. 528]).

Theorem 1 is proved.

References

- [1] N. Balakrishnan and V.B. Nevzorov. A Primer on Statistical Distributions. Wiley, New Jersey, 2003.
- [2] R.V. Erickson. On an l_p version of the berry–esséen theorem for independent and m-dependent random variables. Ann. Probab., $\mathbf{1}(3)$:497–503, 1973.
- [3] R.V. Erickson. L_1 bounds for asymptotic normality of m-dependent sums using Stein's technique. Ann. Probab., 2:522–529, 1974.
- [4] I.A. Ibragimov and Yu.V. Linnik. *Independent and Stationary Connected Variables*. Nauka, Moscow, 1965 (in russian).
- [5] M. Loève. Probability Theory. I. Springer-Verlag, New York, Berlin, Heidelberg, 4th edition, 1977.
- [6] E. Lukacs. Characteristic Functions. Nauka, Moscow, 1979 (in russian).
- [7] Ch. Stein. A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In *Proc. Math. Statist. and Probab.*, Vol. 2, pp. 583–602, Berkeley, CA, 1972. Univ. Calif. Press.
- [8] J. Sunklodas. On the rate of convergence of L_p norms in the central limit theorem for independent random variables. Lithuanian Math. J., 42(3):296-307, 2002.
- [9] J. Sunklodas. On the rate of convergence of L_p norms in the CLT for Poisson and gamma random variables. *Lithuanian Math. J.*, **49**(2):216–221, 2009.
- [10] A.N. Tikhomirov. On the rate of convergence in the central limit theorem for weakly dependent variables. *Theory Probab. Appl.*, 25:790–809, 1980.

REZIUMĖ

Normaliosios aproksimacijos įverčiai mišriajam Puasono ir gama atsitiktiniam dydžiui

 $J.\ Sunklodas$

Darbe gautas standartizuoto atsitiktinio dydžio $(Z - \mathbb{E}Z)/\sqrt{\mathbb{D}Z}$, kur $Z = a_1X + a_2Y$, $a_1 + a_2 = 1$, $a_i \geq 0$, i = 1, 2, X yra pasiskirstęs pagal Puasono skirstinį su parametru $\lambda > 0$, o Y – pagal standartinį gama skirstinį su parametru $\alpha > 0$, normos Δ_p viršutinis įvertis metrikoje L_p su visais $1 \leq p \leq \infty$.

Raktiniaižodžiai: normalioji aproksimacija, L_p norma, Puasono skirstinys, standartinis gama skirstinys, Puasono ir gama a.d. mišinys.