The Lerch zeta-function with algebraic irrational parameter

Danutė GENIENĖ Šiauliai University P. Višinskio 25, LT-76351 Šiauliai, Lithuania e-mail: dana@splius.lt

Abstract. In this note, we present probabilistic limit theorems on the complex plane as well as in functional spaces for the Lerch zeta-function with algebraic irrational parameter.

Keywords: Lerch zeta-function, probability measure, weak convergence.

Let $s = \sigma + it$ be a complex variable. The Lerch zeta function $L(\lambda, \alpha, s)$ with parameters $\lambda \in \mathbb{R}$ and $0 < \alpha \leq 1$ is defined, for $\sigma > 1$, by

$$L(\lambda, \alpha, s) = \sum_{m=0}^{\infty} \frac{e^{2\pi i \lambda m}}{(m+\alpha)^s}$$

and by analytic continuation elsewhere. For $\lambda \in \mathbb{Z}$, the function $L(\lambda, \alpha, s)$ reduces to the Hurwitz zeta-function, while for $\lambda \notin \mathbb{Z}$, is an entire function. We consider the last case and suppose that $\lambda \in (0, 1)$.

In this note, we give a survey of the results obtained in [2,3] and [4], and correct some inaccuracies of the papers [2,3].

For $\mathbb{N}_0 = \mathbb{N} \bigcup \{0\}$, define

$$L(\alpha) = \{ \log(m + \alpha) \colon m \in \mathbb{N}_0 \}.$$

If α is algebraic irrational, then J.W.S. Cassels [1] proved that at least 51 percent of elements of the set $L(\alpha)$ are linearly independent over the field of rational numbers \mathbb{Q} . Denote by $I(\alpha)$ the maximal linearly independent over \mathbb{Q} subset of $L(\alpha)$, and suppose that $D(\alpha) = L(\alpha) \setminus I(\alpha) \neq \emptyset$. The case $D(\alpha) = \emptyset$ is the same that of transcendental α . If $\log(m + \alpha) \in D(\alpha)$, then there exist elements $\log(m_1(m) + \alpha), \ldots, \log(m_n(m) + \alpha) \in I(\alpha), n(m) < \infty$, and non-zero integers $k_0(m), k_1(m), \ldots, k_{n(m)}(m)$ such that

 $k_0(m)\log(m+\alpha) + k_1(m)\log(m_1(m)+\alpha) + \dots + k_{n(m)}(m)\log(m_{n(m)}(m)+\alpha) = 0.$

Hence, it follows that

$$m + \alpha = (m_1(m) + \alpha)^{-\frac{k_1(m)}{k_0(m)}} \cdots (m_{n(m)}(m) + \alpha)^{-\frac{k_{n(m)}(m)}{k_0(m)}}.$$
 (1)

Now define two subsets $\mathcal{M}(\alpha)$ and $\mathcal{N}(\alpha)$ of \mathbb{N}_0 by

$$\mathcal{M}(\alpha) = \{ m \in \mathbb{N}_0 \colon \log(m + \alpha) \in I(\alpha) \},\$$

and

$$\mathcal{N}(\alpha) = \{ m \in \mathbb{N}_0 \colon \log(m + \alpha) \in D(\alpha) \}.$$

Moreover, let

$$\Omega=\prod_{m\in\mathcal{M}(\alpha)}\gamma_m,$$

where $\gamma_m = \{s \in \mathbb{C} : |s| = 1\}$ for all $m \in \mathcal{M}(\alpha)$, and \mathbb{C} denotes the complex plane. Then infinite-dimensional torus Ω is a compact topological Abelian group, therefore, we obtain the probability space $(\Omega, \mathcal{B}(\Omega), m_H)$, where $\mathcal{B}(S)$ denotes the class of Borel sets of the space *S*, and m_H is the probability Haar measure on $(\Omega, \mathcal{B}(\Omega))$. Denote by $\omega(m)$ the projection of $\omega \in \Omega$ to the coordinate space $\gamma_m, m \in \mathcal{M}(\alpha)$, and if (1) holds, then, for $m \in \mathcal{N}(\alpha)$, we put

$$\omega(m) = \omega^{-\frac{k_1(m)}{k_0(m)}}(m_1(m))\cdots\omega^{-\frac{k_n(m)(m)}{k_0(m)}}(m_{n(m)}(m)),$$
(2)

where the principal values of roots are taken. Thus, $\omega(m)$ is defined for all $m \in \mathbb{N}_0$.

We limit ourselves by a class \mathcal{A} of algebraic irrational α for which the numbers

$$\frac{k_1(m)}{k_0(m)}, \dots, \frac{k_{n(m)}(m)}{k_0(m)}$$

in (1) are integers. This requirement implies the orthogonality of the random variables $\omega(m), m \in \mathbb{N}_0$. Note that in [2] and [3] the class \mathcal{A} was not used, and now we correct this gap.

For $\alpha \in \mathcal{A}$ and $\sigma > \frac{1}{2}$, on $(\Omega, \mathcal{B}(\Omega), m_H)$, define the complex-valued random element $L(\lambda, \alpha, \sigma, \omega)$ by

$$L(\lambda, \alpha, \sigma, \omega) = \sum_{m=0}^{\infty} \frac{e^{2\pi i \lambda m} \omega(m)}{(m+\alpha)^{\sigma}}$$

and denote its distribution by $P_L^{\mathbb{C}}$. Moreover, let meas{*A*} stand for the Lebesgue measure of a measurable set $A \subset \mathbb{R}$, and let, for T > 0,

$$v_T^t(\ldots) = \frac{1}{T} \text{meas} \{t \in [0, T]: \ldots\}$$

where in place of dots a condition satisfied by *t* is to be written, and the sign *t* in v_T^t only indicates that the measure is taken over $t \in [0, T]$.

THEOREM 1. Suppose that $\lambda \in (0, 1)$, $\alpha \in \mathcal{A}$ and $\sigma > \frac{1}{2}$. Then

$$\nu_T^t (L(\lambda, \alpha, \sigma + it) \in A), \quad A \in \mathcal{B}(\mathbb{C}),$$

converges weakly to $P_L^{\mathbb{C}}$ as $T \to \infty$.

The proof of Theorem 1 remains the same as in [2].

Now let $D = \{s \in \mathbb{C}: \sigma > \frac{1}{2}\}$, and denote by H(D) the space of analytic on D functions equipped with the topology of uniform convergence on compacta. Moreover, for $\alpha \in \mathcal{A}$, on $(\Omega, \mathcal{B}(\Omega), m_H)$, define the H(D)-valued random element $L(\lambda, \alpha, s, \omega)$ by

$$L(\lambda, \alpha, s, \omega) = \sum_{m=0}^{\infty} \frac{e^{2\pi i \lambda m} \omega(m)}{(m+\alpha)^s}$$

and denote its distribution by P_{I}^{H} .

THEOREM 2. Suppose that $\lambda \in (0, 1)$ and $\alpha \in A$. Then

$$\nu_T^{\tau}(L(\lambda, \alpha, s+i\tau) \in A), \quad A \in \mathcal{B}(H(D)),$$

converges weakly to P_L^H as $T \to \infty$.

The proof of Theorem 2 is given in [4].

Now suppose that $\alpha_1, \ldots, \alpha_r$ are distinct algebraic irrational numbers, $\lambda_j \in (0, 1)$, and $L(\lambda_j, \alpha_j, s)$, $j = 1, \ldots, r$, are the Lerch zeta-functions. Define

$$\Omega^r = \prod_{j=1}^r \Omega_j,$$

where

$$\Omega_j = \prod_{m \in \mathcal{M}(\alpha_j)} \gamma_m,$$

and $\gamma_m = \gamma$ for $m \in \mathcal{M}(\alpha_j)$, j = 1, ..., r. Since each torus Ω_j is a compact topological Abelian group, by the Tikhonov theorem, Ω^r is as well. Thus, we obtain a probability space $(\Omega^r, \mathcal{B}(\Omega^r), m_H^r)$, where m_H^r is the probability Haar measure on $(\Omega^r, \mathcal{B}(\Omega^r))$. For brevity, denote $\underline{\omega} = (\omega_1, ..., \omega_r) \in \Omega^r$, where $\omega_j \in \Omega_j$, $j = 1, ..., r, \underline{\lambda} = (\lambda_1, ..., \lambda_r), \underline{\alpha} = (\alpha_1, ..., \alpha_r)$ and $\underline{\sigma} = (\sigma_1, ..., \sigma_r)$. For $\alpha_1, ..., \alpha_r$ and $\min_{1 \leq j \leq r} \sigma_j > \frac{1}{2}$, on the probability space $(\Omega^r, \mathcal{B}(\Omega^r), m_H^r)$, define the \mathbb{C}^r -valued random element $\underline{L}(\underline{\lambda}, \underline{\alpha}, \underline{\sigma}, \underline{\omega})$, by

$$\underline{L}(\underline{\lambda},\underline{\alpha},\underline{\sigma},\underline{\omega}) = (L(\lambda_1,\alpha_1,\sigma_1,\omega_1),\ldots,L(\sigma_r,\alpha_r,\sigma_r,\omega_r)),$$

where

$$L(\lambda_j, \alpha_j, \sigma_j, \omega_j) = \sum_{m=0}^{\infty} \frac{e^{2\pi i \lambda_j m} \omega_j(m)}{(m+\alpha_j)^{\sigma_j}}$$

Here $\omega_j(m)$ is the projection of $\omega_j \in \Omega_j$ to the coordinate space γ_m if $m \in \mathcal{M}(\alpha_j)$, and is the relation of type (2) otherwise. Denote by $P_{\underline{L}}$ the distribution of the random

element $\underline{L}(\underline{\lambda}, \underline{\alpha}, \underline{\sigma}, \underline{\omega})$, i. e.,

$$P_{\underline{L}}(A) = m_H^r \left(\underline{\omega} \in \Omega^r : \underline{L}(\underline{\lambda}, \underline{\alpha}, \underline{\sigma}, \underline{\omega}) \in A \right), \quad A \in \mathcal{B}(\mathbb{C}^r)$$

Now we are in position to state a corrected joint limit theorem on the complex plane for Lerch zeta-functions.

THEOREM 3. Suppose that $\lambda_j \in (0, 1)$, j = 1, ..., r, $\min_{1 \le j \le r} \sigma_j > \frac{1}{2}$, and that $\alpha_1, ..., \alpha_r$ are distinct algebraic irrational numbers from the class \mathcal{A} such that the set

$$\bigcup_{j=1}^{I} I(\alpha_j)$$

is linearly independent over Q. Then

$$\nu_T^t (\underline{\omega} \in \Omega^r : \underline{L}(\underline{\lambda}, \underline{\alpha}, \underline{\sigma}, \underline{\omega}) \in A), \quad A \in \mathcal{B}(\mathbb{C}^r),$$

converges weakly to the measure $P_{\underline{L}}$ as $T \to \infty$.

The proof or Theorem 3 remains the same as that of Theorem 4 from [3]. The class \mathcal{A} is used only for the proof that $\underline{L}(\underline{\lambda}, \underline{\alpha}, \underline{\sigma}, \underline{\omega})$ is a \mathbb{C}^r -valued random element.

Note that in the region $\sigma > 1$ the class A is not necessary because in this case the series

$$\sum_{m=0}^{\infty} \frac{\mathrm{e}^{2\pi i \lambda m} \omega(m)}{(m+\alpha)^s}$$

converges absolutely, and the orthogonality of the sequence $\{\omega(m): m \in \mathbb{N}_0\}$ is not needed. So, we have the following results. Let $L_1(\lambda, \alpha, \sigma, \omega)$ be the complex-valued random element defined, for $\sigma > 1$, by the same formula as the complex-valued random variable $L(\lambda, \alpha, \sigma, \omega)$, and $P_{L_1}^{\mathbb{C}}$ is its distribution.

THEOREM 4. Suppose that $\lambda \in (0, 1)$ and $\sigma > 1$. Then

$$\nu_T^t(L(\lambda, \alpha, \sigma + it) \in A), \quad A \in \mathcal{B}(\mathbb{C}),$$

converges weakly to $P_{L_1}^{\mathbb{C}}$ as $T \to \infty$.

Let $D_1 = \{s \in \mathbb{C}: \sigma > 1\}$, and $H(D_1)$ is the space of analytic on D_1 functions with the topology of uniform convergence on compacta. Moreover, let $L_1(\lambda, \alpha, s, \omega)$ be the $H(D_1)$ -valued random element defined by the same formula in the region D_1 as the H(D)-valued random element $L(\lambda, \alpha, s, \omega)$, and $P_{L_1}^H$ is the distribution of $L_1(\lambda, \alpha, s, \omega)$.

THEOREM 5. Suppose that $\lambda \in (0, 1)$. Then

$$\nu_T^{\tau}(L(\lambda, \alpha, s + i\tau) \in A), \quad A \in \mathcal{B}(H(D_1)),$$

converges weakly to $P_{L_1}^H$ as $T \to \infty$.

Theorem 3 also has a similar analogue.

THEOREM 6. Suppose that $\lambda_j \in (0, 1)$, j = 1, ..., r, $\min_{1 \leq j \leq r} \sigma_j > 1$, and that $\alpha_1, ..., \alpha_r$ are distinct algebraic irrational numbers such that the set

$$\bigcup_{j=1}' I(\alpha_j)$$

is linearly independent over Q. Then

$$\nu_T^t(\underline{L}(\underline{\lambda},\underline{\alpha},\underline{\sigma}+it)\in A), \quad A\in\mathcal{B}(\mathbb{C}^r),$$

converges weakly to $P_{\underline{L}_1}$ as $T \to \infty$.

Here $P_{\underline{L}_1}$ is defined by the same formula as $P_{\underline{L}}$ with restriction $\min_{1 \leq j \leq r} \sigma_j > 1$ only.

References

- 1. J.W.S. Cassels, Footnote to a note of Davenport and Heilbronn, J. London Math. Soc., 36: 177–184, 1961.
- 2. V. Garbaliauskienė, D. Genienė, A. Laurinčikas. Value-distribution of the Lerch zeta-function with algebraic irrational parameter. I. *Lith. Math. J.*, 47(2): 163–176, 2007.
- D. Geniene, A. Laurinčikas, R. Macaitiene. Value-distribution of the Lerch zeta-function with algebraic irrational parameter. II. *Lith. Math. J.*, 47(4):394–405, 2007.
- D. Genienė, A. Laurinčikas, R. Macaitienė. Value-distribution of the Lerch zeta-function with algebraic irrational parameter. III. *Lith. Math. J.*, 48(3): 282–293, 2008.

REZIUMĖ

D. Genienė. Lercho dzeta funkcija su algebriniu iracionaliuoju parametru

Šiame straipsnyje pateikiamos tikimybinės ribinės teoremos Lercho dzeta funkcijai su algebriniu iracionaliuoju parametru kompleksinėje plokštumoje ir funkcijų erdvėse.

Raktiniai žodžiai: Lercho dzeta funkcija, tikimybinis matas, silpnas konvergavimas.