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On the uniformity of distribution of Farey fractions
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Abstract. Let Fx be the set of nonnegative rationals m
n with 0 < n � x and (m,n) = 1. For some fixed

interval I ⊂ (0;+∞), I = (λ1;λ2) let F(u|x, I ) = #(Fx ∩ (λ1;λ1 + u(λ2 − λ1))/#(Fx ∩ I ). The paper
deals with the estimation of discrepancy |F(u|x, I )− u|, 0 � u � 1.
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Introduction

Let x be some positive integer. We denote by Fx the set of nonnegative rationals m
n

with 0 < n � x and (m,n) = 1. For some interval I ⊂ (0;+∞) let us denote F I
x =

Fx ∩I. If I = [0; 1] the finite sequence of all numbers fromF I
x , arranged in ascending

order, is called the Farey sequence of order x. It is known [2,4] that some conjectures
about the uniformity of distribution of Farey sequence are equivalent to the Riemann
hypothesis. The following theorem is proved and discussed in [2,4].

THEOREM 1. Let ρ1 < . . . < ρN be the Farey sequence of order x, here N =
#F [0;1]

x , ρN = 1. Then the Riemann hypothesis is equivalent to the statement: the esti-
mate

N∑
i=1

(
i

N
− ρi

)2

= O(x−1+ε), x → ∞

holds with an arbitrary ε > 0.

For the following development of the topic see, for example, [3].
For a moment let I = [0; 1] and

Dx = sup
0�u�1

∣∣∣∣#(F I
x ∩ [0;u])
#F I

x

− u

∣∣∣∣.
H. Niederreiter showed in [5] that with some absolute constants c1 and c2 the estimate

c1

x
� Dx � c2

x
(1)
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holds. More than two decades later this result was improved unexpectedly by F. Dress,
who proved that indeed

Dx = 1

x
,

see [1].
The purpose of this note is to establish the estimates like (1) for the discrepances

related to some subsets of Fx.

Definitions and results

Let I = (λ1;λ2) ⊂ (0;∞); the interval I may depend on x. We denote |I | = λ2 − λ1.

Define the distribution function by

F(u|x, I) = #
(F I

x ∩ (λ1;λ1 + u(λ2 − λ1))
)
/#F I

x , 0 � u � 1.

THEOREM 2. For all x � 1 and I the following estimate holds:

sup
0�u�1

|F(u|x, I) − u| � 1

|I | · x .

The constant in � is absolute.

As a corrollary we get immediately, that if |I |·x → ∞ with x → ∞, then F(u|x, I)

converges weakly to the distribution function F(u) = u, 0 � u � 1.

THEOREM 3. If I = (λ1;λ2),λ2 − λ1 > 1/x and λ1 = a/b is a rational number,
(a,b) = 1, then

sup
0�u�1

|F(u|x, I) − u| � 1
b|I | · x .

The proof of this statement is straightforward. With an arbitrary m/n ∈F I
x

m

n
− λ1 � 1

bn
� 1

bx
,

hence the interval (λ1;λ1 + 1/(bx)) = (λ1;λ1 + u(λ2 − λ1)), with u = 1/(b|I |x)

contains no numbers from F I
x . It follows then that F(u|x, I) = 0.

Proof of Theorem 2. Let J = (α;β) be some interval of nonnegative real numbers
and

S(n,J ) = #
{

m

n
: (m,n) = 1,

m

n
∈ J

}
, V (n,J ) = #{m: αn < m < βn}.

Evidently, V (n,J ) = n|J |+θ(n,J ), here |θ(n,J )| � 1. The quantity V (n,J ) is equal
to the number of fractions k/d ∈ J, (k,d) = 1, d|n. Consequently,

V (n,J ) =
∑
d|n

S(d,J ).
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We have then V (n,J ) = S(n,J ) ∗ I(n), where ∗ means the Dirichlet convolution and
I(n) = 1. Then S(n,J ) = V (n,J ) ∗ µ(n), i.e.,

S(n,J ) =
∑
d|n

µ

(
n

d

)
V (d,J ).

Hence

#F J
x =

∑
n�x

S(n,J ) =
∑
n�x

∑
d|n

µ

(
n

d

)
V (d,J )

= |J |
∑
n�x

∑
d|n

µ

(
n

d

)
d +

∑
n�x

∑
d|n

µ

(
n

d

)
θ(d,J ).

Because of
∑
d|n

µ

(
n

d

)
d = ϕ(n),

we have

#F J
x = |J |

∑
n�x

ϕ(n) +
∑
n�x

∑
d|n

µ

(
n

d

)
θ(d,J ). (2)

Let us use (2) with J = I and J = Iu = (λ1;λ1 + u(λ2 − λ1)):

#F I
x · |F(u|x, I) − u| = ∣∣#F Iu

x − u · #F I
x

∣∣
=

∣∣∣∣
∑
n�x

∑
d|n

µ

(
n

d

)
(θ(d, Iu) − uθ(d, I))

∣∣∣∣.

We denote θd = θ(d, Iu) − uθ(d, I) and rewrite the sum as

R =
∑
d�x

∑
d|n

µ

(
n

d

)
θd =

∑
d�x

θd

∑
n�x/d

µ(n).

We have now

R �
∑
d�x

∣∣∣∣M
(

x

d

)∣∣∣∣, where M(u) =
∑
n�u

µ(n).

We use in what follows the estimate |M(u)| � uexp{−c
√

logu}, where c > 0, u � 2,
which follows from the law of prime number distribution. Then

∑
d�x

∣∣∣∣M
(

x

d

)∣∣∣∣ � x +
∑

1�d�x/2

∣∣∣∣M
(

x

d

)∣∣∣∣ � x +
∑

1�d�x/2

x

d
exp

{−c
√

log(x/d)
}
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� x + x

[log(x/2)/ log2]∑
m=1

∑
x/2m+1<d�x/2m

1
d

exp
{−c

√
m

} � x.

We have proved that

sup
0�u�1

|F(u|x, I) − u| � x

#F I
x

. (3)

Let us take J = I in (2) and use the equality

∑
n�x

ϕ(n) = 3
π2

x2 + O
(
x logx

)
, x → ∞.

Applying for the remaining term the same arguments as before for R we arrive to

#F I
x = 3

π2
· |I | · x2

{
1 + O

(
logx

x
+ 1

|I | · x
)}

.

Take c1 > 0 sufficiently large, such that |I | · x > c1 implies #F I
x > |I | · x2/5. Then it

follows from (3) that there exists some absolute constant c2 such that

sup
0�u�1

|F(u|x, I) − u| � c2

|I | · x ,

if |I | · x > c1. If we take c2 > c1, then this estimate holds trivially as |I | · x � c1, too.
The Theorem 2 is proved.

Many thanks to the referee for locating almost all misprints and omissions in the
first draft of the paper.
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REZIUMĖ

V. Stakėnas. Farey trupmen ↪u skirstinio tolygumas

Tegu Fx žymi neneigiam ↪u trupmen ↪u
m
n aib ↪e, čia 0 < n � x ir (m,n) = 1. Intervalui I ⊂ (0;+∞),

I = (λ1, λ2) apibrėžkime F(u|x, I ) = #(Fx ∩ (λ1;λ1 + u(λ2 − λ1))/#(Fx ∩ I ). Straipsnyje nagrinėjami
nuokrypio |F(u|x, I )− u|, 0 � u � 1, ↪iverčiai.

Raktiniai žodžiai: Farey trupmenos, tolygusis skirstinys.


