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On the uniformity of distribution of Farey fractions
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Abstract. Let F, be the set of nonnegative rationals %+ with 0 < n < x and (m, n) = 1. For some fixed
interval I C (0; +00), I = (A1; A2) let F(ulx, I) =#(F, N (A1; A1 +u(ra — A1) /#(F, N 1). The paper
deals with the estimation of discrepancy |F (u|x, I) —u|, 0 <u < 1.
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Introduction

Let x be some positive integer. We denote by F . the set of nonnegative rationals %

with 0 <n < x and (m,n) = 1. For some interval I C (0; +00) let us denote ]:){ =
F,.NI.1f I =[0; 1] the finite sequence of all numbers from F, XI , arranged in ascending
order, is called the Farey sequence of order x. It is known [2,4] that some conjectures
about the uniformity of distribution of Farey sequence are equivalent to the Riemann
hypothesis. The following theorem is proved and discussed in [2,4].

THEOREM 1. Let p; < ... < py be the Farey sequence of order x, here N =

#F. )EO; 1], pN = 1. Then the Riemann hypothesis is equivalent to the statement: the esti-
mate

N i 2
Z(ﬁ—pi) =0(1), x> o0

i=1

holds with an arbitrary € > 0.

For the following development of the topic see, for example, [3].
For a moment let / =[0; 1] and

#FLN[0; ul)
#F!

D, = sup
0<u<1

H. Niederreiter showed in [5] that with some absolute constants c¢; and ¢, the estimate

X X
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holds. More than two decades later this result was improved unexpectedly by F. Dress,
who proved that indeed
1
D x = >
by

see [1].
The purpose of this note is to establish the estimates like (1) for the discrepances
related to some subsets of F .

Definitions and results

Let I = (A1; A2) C (0; 00); the interval I may depend on x. We denote |I| = Ay — A1.
Define the distribution function by

Fulx, D =#(F 03 A +uOo —20)))/4FL, 0<u<l.
THEOREM 2. Forall x > 1 and I the following estimate holds:

1
sup [F(ulx,I) —u| < —.
0<u<1 ] -x

The constant in < is absolute.

As a corrollary we get immediately, that if |/]|-x — oo with x — oo, then F (u|x, I)
converges weakly to the distribution function F (u) =u, 0 <u < 1.

THEOREM 3. If I = (A1; A2),A2 — A1 > 1/x and L1 = a/b is a rational number,
(a,b) =1, then

sup |F(ulx,I) —u| > .
0<u<1 “ bl -x

The proof of this statement is straightforward. With an arbitrary m/n € F, XI

m 1 1

——MZz— =,

n bn = bx
hence the interval (A; A1 + 1/(bx)) = (A5 A1 + u(Ay — A1), with u = 1/(b|I|x)
contains no numbers from F, XI . It follows then that F (u|x, ) =0.

Proof of Theorem 2. Let J = («; B) be some interval of nonnegative real numbers
and

S(n,J):#{%: (m,n) =1, %E J}, V(n,J)=#m:an <m < Bn}.

Evidently, V(n, J) =n|J|+0(n, J), here |0(n, J)| < 1. The quantity V (n, J) is equal
to the number of fractions k/d € J, (k,d) = 1, d|n. Consequently,

Vin,))=>_ 8. ).

dln
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We have then V(n, J) = S(n, J) % I(n), where * means the Dirichlet convolution and
I(n)=1.Then S(n,J)=V(n,J)* un),ie.,

S, J) = ZM( )V(d ).

din
Hence
#F =Y " S0, J)= ZZ“( )V(d J)
n<x n<x din
|J|ZZM< )d+22u( )9(d J).
n<x din n<x dln
Because of
ZM( )d o),
din
we have

#F] = |J|Z¢(n)+ZZM< )9(d T). )

n<x n<x din

Letususe 2)with J =7 and J =1, = (A1; A1 +u(rXy — Ap)):

#FLFulx, 1) —u| = [#F —u - #F!|

ZZM< )(Q(d 1) — ub(d, 1))‘

n<x dln

We denote 6; =6(d, I,) — u6(d, I) and rewrite the sum as

R= ZZM( )ed—zed > um).

d<x din d<x n<x/d

X
Ml =
(3)
We use in what follows the estimate |M (u)| < u exp{—c+/logu}, where ¢ > 0, u > 2,
which follows from the law of prime number distribution. Then

> M(d>‘<<x+ > ( >‘<<x—|— > Eexp{ —cy/log(x/d) )

d<x 1<d<x/2 1<d<x/2

‘We have now

R

d<x

,  Where M(u) = Z un).

n<u
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[log(x/2)/1og2] 1
Lx+x Z Z Eexp{—cﬂ}«x.

m=1 x/2m+l<d Lx j2m

We have proved that
X

sup |F(ulx, I) —u| < 3

o<u<1 #F]
Let us take J = I in (2) and use the equality
3
Z(p(n) = —2x2 + O(x logx), X — 00.
n<x T
Applying for the remaining term the same arguments as before for R we arrive to

3 1 1
#fj:—2-|1|-x2{1+0< ety )}
T

X 1] -x

Take c¢; > O sufficiently large, such that |/| - x > ¢; implies #]:XI > |I| - x%/5. Then it
follows from (3) that there exists some absolute constant ¢; such that

]

sup |F(ulx,I) —u| < ,
0<u<1 ] -x

if |[1] - x > cy. If we take ¢, > ¢y, then this estimate holds trivially as |/| - x < ¢y, too.
The Theorem 2 is proved.

Many thanks to the referee for locating almost all misprints and omissions in the
first draft of the paper.
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REZIUME

V. Stakénas. Farey trupmeny skirstinio tolygumas

Tegu F, Zymi neneigiamy trupmeny % aibg, ¢ia 0 < n < x ir (m,n) = 1. Intervalui I C (0; +00),
I = (A1, A2) apibrézkime F(u|x, I) =#(F, N (A1; A1 +u(dz — Ap))/#(F, N I). Straipsnyje nagrinéjami
nuokrypio |F(u|x, I) —ul|, 0 < u < 1, jverciai.

Raktiniai ZodZiai: Farey trupmenos, tolygusis skirstinys.



