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On limit theorems for random fields
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Abstract. A complete separable metric space of functions defined on the positive quadrant of the plane
is constructed. The characteristic property of these functions is that at every point x there exist two lines
intersecting at this point such that limits limy→x f (y) exist when y approaches x along any path not
intersecting these lines. A criterion of compactness of subsets of this space is obtained.
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1. Introduction

The theory of weak convergence in the function space D[0,1] (Billingsley [3]) has
been extended by Bickel and Wichura [2], Neuhaus [6], and Straf [7] to D[0,1]q ,
by Lindvall [5] to D[0,∞), and by Ivanoff [4] to D[0,∞)q . In case q = 2 the
spaces D[0,1]2 and D[0,∞)2 consist of functions with two parameters having so
called quadrant limits. Discontinuity points of these functions form lines parallel to
the coordinate axes. Here we construct a more general space of functions with two pa-
rameters having so called net limits. Discontinuity points of these functions form lines
not necessarily parallel to coordinate axes. The restriction of this space to the space
of functions defined on the unit square is a particular case of the space introduced by
Banys and Surgailis [1].

The functions under consideration have the property that at each point x in the
domain of definition there exist two lines intersecting at x such that limits limy→x f (y)

exist when y approaches x along any path not intersecting these lines.

2. Definitions

Let R2 be the two-dimensional Euclidean space with the norm ‖x‖ =
√

x2
1 + x2

2 of an

element x = (x1, x2) ∈ R2. We shall denote by U and ∂U respectively the closure and
the boundary of a set U ⊂ R2 and by Bδ(x) the open circle with radius δ and center x.

DEFINITION 1. A union � = ϕ1 ∪ ϕ2 of line segments ϕ1 and ϕ2 passing through
a point x ∈ R2 is called an elementary net at x if one of the following two conditions
holds: (i) � is a line segment itself and x is an interior point of �; (ii) ϕ1 and ϕ2 are
not aligned with a straight line.
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Let X = [0,1]2 = {x = (x1, x2),0 � x1, x2 � 1} be the unit sqare. Denote by ∂iX,
i = 1, . . . ,4, the sides of X and by ∂0X the set of its corner points.

DEFINITION 2. A finite union � = ∪n
i=1ϕi (n � 4) of line segments lying in X is

called a net if ∂X ⊂ � and for every x ∈ � there exists a circle B = B(x) such that
� ∩ B is an elementary net at x.

If � ∩ B(x) is formed by two line segments not aligned with a straight line, then x

is called a node point of the net �.

Let � = {A1, . . . ,An} be a finite partition of X, i.e. X = ∪n
i=1Ai and Ai ∩ Aj = ∅

if i �= j . Denote ∂� = ⋃n
i=1 ∂Ai . Let �X be the collection of all finite partitions � of

X such that ∂� is a net.

DEFINITION 3. A function f : X → R1 is simple if

f =
m∑

i=1

riχAi
(m � 1),

where χA is indicator function, � = {A1, . . . ,Am} ∈ �X and, moreover,

f (x) = lim sup
y→x

f (y), x ∈ X. (1)

Given simple function f = ∑m
i=1 riχAi

, for each x ∈ ∂� there exists a circle B(x)

such that ∂� ∩ B(x) is the elementary net at x and limits{
lim f (y), y → x, y ∈ Ai ∩ B(x)

}
(2)

exist for such i for which x is accumulation point of Ai . (The number of such Ai is no
more than 4).

The class of simple functions will be denoted by D0.

3. The space D[0,1]2

Denote by D(X) the uniform clousure of D0 in the space of all bounded functions
from X to R1.

Let f ∈ D(X) and � be an elementary net at x ∈ X. The elementary net � divides
any sufficiently small circle B(x) into disjoint components B1, . . . ,Bn (2 � n � 4).
We say that f has � – limits at x if there exist limits

lim
y→x,y∈Bi

f (y) = f (i)(x), i = 1, . . . ,n. (3)

Put L(x,f ) = {f (i)(x), i = 1, . . . ,n}. It follows that f (x) = max1�i�n f (i)(x) and
limits limy→x f (y) exist when y approaches x along the lines forming the elementary
net �, and these limits are in L(x,f ). Therefore,

f (x) = lim sup
y→x

f (y), x ∈ X.
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Now we define a modulus which plays in D the same role as the similar modulus
does in D[0,1] and in D[0,1]2. Let � be a net. We shall use the following notations:
S(�) = min{‖x − y‖, x �= y}, where the minimum extends over the node points of
�; S�(x,y)− the smallest length of all line segments ϕi ⊂ � union ∪ϕi of which
connects the points x and y. Put S�(x,y) = √

2 if x and y are not connected by any
part of �;

R(�) = inf
x �=y

{√
2‖x − y‖
S�(x,y)

, x,y ∈ �

}
;

�(�) = minx sinγx , where the minimum extends over all node points x of �, and γx

is the smallest positive angle between two line segments ϕ1,ϕ2 ⊂ � intersecting at the
node point x. For an arbitrary net � and the boundary ∂X the following relations hold:

0 < S(�), R(�),�(�) � 1, S(∂X) = R(∂X) = �(∂X) = 1.

With a net �, we associate a modulus of its “smoothness” defined by

κ(�) = S(�)R(�)�(�).

Obviously, 0 < κ(�) � 1 and κ(∂X) = 1.
Let f ∈ D(X), � = {A1, . . . ,An} ∈ �X , and δ > 0 be given. Put ωf (�) =

max1�i�n ωf (Ai), where ωf (Ai) = sup{|f (x)−f (y)|, x,y ∈ Ai}, i = 1, . . . ,n, and
wδ(f ) = inf{ωf (�),� ∈ �X,κ(∂�) > δ}, where the minimum extends over all the
partitions � ∈ �X satisfying κ(∂�) > δ. To introduce a metric on D(X) we begin
with a group � of one to one mappings of X onto itself. A one to one mapping λ

of X onto itself is called a C1 – diffeomorphism if it is continuous together with its
inverse λ−1 and the partial derivatives

∂λi

∂xj
,

∂λ−1
i

∂xj
, i, j = 1,2,

where x = (x1, x2) and λ(x) = (λ1(x),λ2(x)).
Let � be the class of all C1 – diffeomorphisms such that λ(x) = x, x ∈ ∂0X,

and λ(∂iX) = ∂i(X), i = 1, . . . ,4. Denote by Cλ the matrix of the partial derivtives
of λ, i.e.,

Cλ(x) =
[
∂λi(x)

∂xj

]
i,j=1,2

.

Given matrix A = [ai,j ], its norm is defined by |A| = 2 maxi,j |ai,j |. Let I be the
identity matrix. Define function |· |: � → R1 by

|λ| = sup
x

F (|Cλ(x) − I |) + sup
x

F (|Cλ−1(x) − I |),

where F(t) = t (1 + t)−1, t � 0. We define a metric in D(X) by d(f,g) = infε{ε > 0:
there exists λ ∈ � such that |λ| < ε and supx |f (x)−g(λ(x))| < ε}. The space (D,d)

is a complete separable metric space.
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Now we formulate three statements on the compatness and tightness in D which
are analogous to Theorems 1–3 in [1].

THEOREM 1. A set A ⊂ D has a compact closure in (D,d) if and only if

sup
f ∈A

sup
x

|f (x)| < ∞ and lim
δ→0

sup
f ∈A

wδ(f ) = 0.

Denote B(D) the σ -algebra of Borel subsets of (D,d).

THEOREM 2. The sequence {Pn} of probability measures on (D,B(D)) is tight if
and only if the following conditions hold:

lim
a→∞ lim sup

n→∞
Pn

{
f : sup

x
|f (x)| > a

}
= 0

and for each ε > 0

lim
δ→0

lim sup
n→∞

Pn{f : wδ(f ) � ε} = 0.

THEOREM 3. The sequence ξn of random fields converges in distribution to the
random field ξ in (D,d) if and only if the following conditions hold:

ξn −→
f dd

ξ

and for all ε > 0

lim
δ→0

lim supP {wδ(ξn) > ε} = 0.

4. The space D[0,∞)2

Now we construct a similar space of functions defined on R2+ = [0,∞)2 extending the
techniques used by Lindvall [5].

Let Dc[0,1]2 = {f ∈ D[0,1]2: f is continuous at x = (x1, x2) if x1 = 1 or x2 = 1}.
Denote by Dc[0,1)2 the space of functions from Dc[0,1]2 restricted to [0,1)2. In
Dc[0,1)2, define metric d

′
by

d
′
(f,g) = d(f ,g), f,g ∈ Dc[0,1)2,

where f ,g ∈ Dc[0,1]2, f (x) = f (x), g(x) = g(x) for x ∈ [0,1)2. The space
Dc[0,1)2 is closed in D[0,1)2 and, therefore, is a complete separable metric
space. Let R2+ = {(x1, x2) ∈ R2, 0 � xi < ∞, i = 1,2}. The function space D(R2+)

is defined analogously to D(X) with minor changes. Denote Dc(R2+) = {f ∈
D (R2+): limits limx→x∗ f (x) = f (x∗) exist and f (x∗) < ∞ for x∗ = (x∗

1 , x∗
2 ), x∗

1 =
∞ or x∗

2 = ∞}. For x = (x1, x2) ∈ [0,1)2, put ϕ(x) = (− log(1 − x1),− log(1 − x2))

and define the mapping �: Dc(R2+) → Dc[0,1)2 by

�(f ) = f ◦ ϕ, f ∈ Dc(R2+).
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The mapping � is a bijection, and Dc(R2+) with metric h(f,g) = d
′
(�(f ),�(g)),

f,g ∈ Dc(R2+) is a complete separable metric space. Let

Dc∞ = {〈fk〉∞k=1, fk ∈ Dc(R2+)
}
.

On Dc∞ a metric ρ is defined by

ρ(ξ,η) =
∞∑

k=1

h(fk,gk)

1 + h(fk,gk)
2−k,

where ξ = 〈fk〉∞k=1, η = 〈gk〉∞k=1. (Dc∞,ρ) is again a complete and separable. For k =
1,2, . . . put gk(x) = g

′
k(x1)g

′
k(x2)), where x = (x1, x2) ∈ R2+, and g

′
k are defined by

g
′
k(t) = 1 for t � k, g

′
k(t) = k + 1 − t for k < t < k + 1, and g

′
k(t) = 0 for t � k + 1.

Define the mappings ck:D(R2+) → Dc(R2+) by ck(f ) = f × gk , and the mapping
�: D(R2+) → Dc∞ by �(f ) = 〈ck(f )〉∞k=1.

Now we can define a metric on D(R2+). For f,g ∈ D(R2+) put

d∞(f,g) = ρ(�(f ),�(g)).

THEOREM 4. The space D(R2+) endowed with metric d∞ is a complete separable
metric space.

Proof follows from the fact that �(D(R2+)) is closed in Dc∞.

THEOREM 5. Let f,f1,f2, . . . ∈ D(R2+). Then fn → f if and only if there exist a
sequence 〈λn〉∞n=1, λn ∈ �(R2+), such that for all a > 0 the following relations hold:

lim
n→∞ sup

x∈[0,a]2
|fn(λn(x)) − f (x)| = 0, lim

n→∞ sup
x∈[0,a]2

∣∣∣∣∂λi
n

∂xj

(x) − δij

∣∣∣∣ = 0,

and

lim
n→∞ sup

x∈[0,a]2

∣∣∣∣∂(λ−1
n )i

∂xj

(x) − δij

∣∣∣∣ = 0,

where x = (x1, x2), λn = (λ1
n,λ2

n), λ−1
n = ((λ−1

n )1, (λ−1
n )2),

δij =
{

1, if i = j ,
0, if i �= j .

The theorem can be proved using similar arguments like in the proof of Theorem 3.1
in [4].

Given x1, . . . , xk ∈ R2+ define the projection πx1,...,xk
: D(R2+) → Rk as usual:

πx1,...,xk
(f ) = (f (x1), . . . ,f (xk)), f ∈ D(R2+).

Let T ⊂ R2+. Denote by FT the σ -algebra containing all the finite-dimensional sets
π−1

x1,...,xk
A, where A are Borel subsets of Rk, x1, . . . , xk ∈ T , k = 1,2, . . ..



On limit theorems for random fields 23

THEOREM 6. If T is dense in R2+, then FT coincides with Borel σ -algebra of
subsets of D(R2+).

Proof. Let πc
x1,...,xk

be a restriction of πx1,...,xk
in Dc(R2+). Projections πc

x1,...,xk
are

measurable. If n > max |xi |, where |xi | = max
{
x1
i , x2

i

}
, then πx1,...,xk

= πc
x1,...,xk

◦ cn.
Therefore, πx1,...,xk

are measurable as well. Thus FT is contained in the Borel σ -
algebra of subsets of D(R2+). The opposite inclusion follows from Proposition 1.4
in [8].

For a = (a1, a2) ∈ R2, denote Xa = {(x1, x2): 0 � xi � ai, i = 1,2}. Let D(Xa)

be the space of functions from Xa to R1 defined analogously to the space D(X). De-
fine the mapping ra: D(R2+) → D(Xa) by raf (x) = f (x), x ∈ Xa . For a probability
measure P on D(R2+), let TP be the set of those a ∈ R2+ for which

P
{
f : raf ∈ D(Xa) and ra is continuous at f

} = 1.

THEOREM 7. Let P,P1,P2, . . . be probability measures on D(R2+). Then the se-
quence

{
Pn,n = 1,2, . . .

}
converges weakly to P if and only if for all a ∈ TP the

sequence
{
Pnr

−1
a , n = 1,2, . . .

}
converges weakly to P r−1

a .

The proof is analogous to the proof of Theorem 3 in [5].
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REZIUMĖ

R. Banys. Apie atsitiktini ↪u lauk ↪u ribines teoremas

Sukonstruota funkcij ↪u, apibrėžt ↪u plokštumos pirmajame kvadrante, pilnoji separabelioji metrinė erdvė.
Šios erdvės funkcij ↪u charakteringoji savybė yra tai, kad kiekviename taške x galima nubrėžti dvi tieses
taip, kad ribos limy→x f (y) egzistuot ↪u, kai y artėja prie x bet kuria trajektorija, nekertančia ši ↪u tiesi ↪u.
Pateiktas šios erdvės poaibi ↪u kompaktiškumo kriterijus.

Raktiniai žodžiai: Skorochodo topologija, silpnasis konvergavimas, tankumas, atsitiktiniai laukai.


