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Estimating the Hurst index of the solution
of a stochastic integral equation
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Abstract. Let X (7) be a solution of a stochastic integral equation driven by fractional Brownian mo-
tion B and let Vnz(X ,2) = ZZ;} (A%X )2 be the second order quadratic variation, where A%X =
X (&) —2x (%) + X (&L). Conditions under which n>#~1V2(X, 2) converges almost surely as n — 0o
was obtained. This fact is used to get a strongly consistent estimator of the Hurst index H, 1/2 < H < 1.
Also we show that this estimator retains its properties if we replace V,,Z(X ,2) with V,,Z(Y ,2), where Y (¢) is
the Milstein approximation of X (¢).
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1. Introduction
In this paper we consider the stochastic integral equation

1

X,:S+/g(XS)dBSH, re€[0,1], (1)
0

where B is a fractional Brownian motion (fBm) with the Hurst index 1 /2<H<1.
The integral is Riemann—Stieltjes defined pathwise.
For 0 < @ < 1, C1(R) denotes the set of all C!-functions g2:R — R such that

"(x) — o
18"lo0 + 18"le := sup|g"(x)| + sup M <00
x ity =yl

Let g € CH“(R), O0<a <1 For 1 <p< 1+« there exists a unique solution of
the equation (1) with almost all sample paths in the class of all continuous functions
defined on [0, 1] with bounded p-variation (see [2,3]).
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For a real-valued process Y = (Y;), t € [0, 1], we define the first and second order
quadratic variations as

n n—1
Va¥.2) =" (AY)? and VAX.2) = (a2Y)%,
k=1 k=1

where AgY =Y () — Y(¢f_)) and AZY =Y (], ) —2Y(t]) + Y (t]_,), ]! = £ For
simplicity we shall omit the index n for ¢ in the sequel. The asymptotic behavior
of these variations of Gaussian processes was considered in [1] (see also references
in [1]). The first order quadratic variations for (1) was considered in [4].

The main result of this paper is the following theorem.

THEOREM 1. Let g€ C'7%, 0 < < 1, and |g|oo < 00. Then
1
nHv2(x,2) 25 (4 22H)/g2(X(t))dt.
0

It is easy to see that the following corollary holds.

CORROLORY 1. Define

2
H? = o1 In VZ"(X’Z).
T2 2m2 V(X 2)

Thenﬁ,ﬁz)—HgOasneoo.

In practice, however, we can only obtain “exact” sample paths if we explicitly know
the solution of the considered stochastic integral equation which often is not true. In
such cases we have no other choice but to replace these “exact” sample paths with their
approximations (for example, the Euler or the Milstein ones).

Let Y (¢) be the Milstein approximation of the solution of the stochastic integral
equation (1):

Y (1) = Y (te1) + g (V" (tk—1)) - AxBY

1
+ 58 (" @) g (V" () - (ABH)?, Y™ (1) = X (0) =&,

where Ay BH = BH (1) — B” (1,_;). We shall prove that if we replace the “exact”
sample path with its Milstein approximation, the properties of the estimator H,, will
not change.

THEOREM 2. Let

ﬁ(l)’M::l— 1 ann(Y",Z).
" 2 2In2 V. (Y%2)
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and

11 Vi)

I’-I\n(z)'M:: n .
2 22 V2(¥t,2)

Then I’-I\,il)’M —H 2% 0and I’-I\,iz)’M ~—H2S 0asn— oo

2. Basic notions and auxiliary results

Let
W, (la, b]) :={ f: la,b] > R: v, (f; [a, b]) < oo},
where
n
v (fsla,bl)= SUPZ | f ) — fa-n]”,

7 k=1
»w={x;:i =0,...,n} being all finite partitions of [a, b] such thata =xp < x; < ... <
x, =b.

Let V,(f) :==V,(fila,b]) = v[l,/p(f; [a,b]). V,(f) is a non-increasing function
of p,thatis,if 0 <g < p then V,(f) < V4 (f).
Let f € Wy(la,b]) and h € W, ([a, b]). It is known that

v, ( / £ di [a,b]) < Cpa Vool F: La BV, (B La. b)), )

where V. oo(f: [, b1) = Vy (f [a. b1) 4 Spyc v | f GOl Cpog = £(p~" +q~1) and
L) =2y

The Young’s version of Holder’s inequality
1/q

n n 1/p n
> larbi] < (DakV’) (Dbkﬂ) 3)
k=1 k=1 k=1

holdsif 1/p+1/g > 1 for any p,q > 0.
Let f € W, ([a, b]) and g € W, ([a, b]). For any partition s of [a, b] and for ;f1 +
g~ > 1 we have by Holder inequality

D Vo (f: it xi ) Vp(g: Ixict. xi) < Vg (1 [a, b1V (g3 [a.b1). (@)

Since almost all sample paths of the B¥, 1/2 < H < 1, are locally Holder contin-
uous, we have

Vo (B Is, 1) < L Pt =)'/, (5)
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where s <t < T, p>1/H,

H H
Hy _ |B,” — By

H,y
Ly

, O0<y<H, E(LT’ )k<oo, Vk > 1.
s# |t =S¥
si<T

3. Proofs

Proof of Theorem 1. From [4] it is easy to see that instead of evaluating VnZ(X ,2) we
can evaluate

n—1

> {2 X ) (As1 BT + g2(X (1)) (A BT)?
k=1

—2g(X (1)) g (X (tx—1)) A1 BT A BH )

n—1
=Y {2x ) (A7BT)
k=1

— [ X @) — Xt )][(AcBY)? — A1 BT A BH]

+[e(X @) — g(X (ti-1))] Aey1 B A B,

Further by (3) and (4) for p > 1 we get

n—1
3 [eX @) — (X 1)} Awg1 B A B |
k=1
< max [s(X(w) - g(X (1) VE(BH: 10, 17)

and

n—1 5

> 12X 1)) — &2 (X t-1))| - | (A B™)” — Ay1 B A B

k=1

<2 X (1) — g(X (t—
|g|°°1r£;f‘én|g( (1) — g(X (tx—1))|
ABH 2Py, (B 10,11) + V2(BH; [0, 1])§.

1A B P (8710.1) 4 V(B 0,1)

Also, by (5) and (2) we get

- 1
max [g(X (%)) = (X (t-))] <2177 Cp g /alglool8la Ly PV (X2 10.11).
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Therefore

n—1
n2H71 Z

k=1

[2(X (1) — X )] [(AcBY)” = Ar1 BT A B ]

HeX (1)) — g (X (1) Avs1 B A BH | 250,

as n — oo. To this end it suffices to take p sufficiently close to H and such that
2H < 1+1/p%.
Consequently, the theorem will be proved if

1

n—1
g2H -1 ZgZ(X(tk))(A%BH)Z L 22H)/g2(X(t))dt.
k=1 0

This follows from the Helly—Bray theorem.
Proof of Theorem 2. From [4] it follows that

— a.s.
n2H-1 —> 0 asn— o0.

Va(X.2) = 32X (0-1)) - (AcBT)
k=1

Consider the first order difference of Y (¢)
1 2
AY =g(Y (1) A BY + 2 2 (Y ()8 (Y () (Ak BT)
Note that

2171, (1, 2) = Y g2 (X () (A BT

k=1

n

Z [gz(Y(tkq)) — gz(X(lkq))] (AkBH)2

k=1

2H-1
<n

n

Zgz(Y(tkq))g/(Y(tkfl)) (AkBH)3

k=1

+n2H71

n

Zgz(y(lk—l)) (g’(Y(tk,l))>2(AkBH)4

k=1

1 on
+4n

n
— 2
<2Ugloo, max ¥ (1) — X (1)|n*"™! k§_lﬁ (ArB")
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n
- H1 _ 2
+ 18130 - 18loon ™ /PLI PPN (A BH)
k=1
1 U HAINZ 2H1 N 2
+Z|g|go.|g/|gon 1/p (Ll /p) n2H IZ(AkBH) _
k=1
It is known that
1
sup E|Y(t)—X(t)|:O<—H> as n — 00.
0<r<1 n

This, together with the results of Theorem 1, implies that

n

S [Va(r.2) = (X (-1 - (A B™)?]

k=1

— a.s.
n2H-1 —0 asn— oo.

Consequently, this yields that
sow 11 Van2)

: — n
" 2 2mn2  V,(Y,2)

also is a strongly consistent estimator of the Hurst index H. In a similiar way it is not
hard to check that I’-I\,iz)’M — H 2% 0as n — oo as well.
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REZIUME

K. Kubilius, D. Melichov. Stochastinés integralinés lygties sprendinio Hursto indekso vertinimas

Tarkime, X (¢) yra stochastinés diferencialinés lygties, valdomos trupmeninio Brauno judesio BY,
sprendinys, o V2(X,2) = ZZ;} (A%X)2 yra antrosios eilés kvadratiné variacija, ¢ia A%X =X (’H'Tl) -
2X(§) + X(kn;l) Rastos salygos kada n?f~! Vnz(X, 2) konverguojab.v., kai n — oo. Tai leidZia gauti
stipriai pagrista Hursto indekso H, 1/2 < H < 1, jvertinj. [rodoma, kad jvercio savybés nepasikeis, jei
V2(X,?2) pakeisime V2(Y, 2), &a Y (t) — proceso X (t) Mil§teino aproksimacija.

Raktiniai ZodZiai: trupmeninis Brauno judesys, kvadratiné variacija, pagristas jvertis, MilSteino aproksi-
macija.



