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Abstract. The paper proposes asymmetric cipher protocol based on matrix field over some field F . The
asymmetric cipher is based on two simultaneous problems: matrix conjugator search problem (MCSP)
and matrix discrete logarithm problem (MDLP). The algorithm construction does not allow performing
a crypto-analysis by replacing the existing MCSP solution to the matrix decomposition problem (MDP)
solution. The security parameters are defined and preliminary security analysis is presented.
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Introduction

The asymmetric cipher constructing must be based on certain one-way function. Ac-
cording to the general definition, OWF is a function, when computing its value for any
argument is easy, but its inversion is not, i.e., this problem is intractable. Hence, the
security of asymmetric cipher relies on the complexity of OWF inversion.

The security of classical asymmetric cipher protocols such as RSA, El Gamal, etc.
relies on the complexity of OWFs based on the number theoretical approach. But after
the significant breakthrough by P. Shor of ATT Research Labs in the field of quantum
computing the situation have changed essentially. The quantum algorithms can factor
integers and find discrete logarithms in probabilistic polynomial time. So the secu-
rity of classical asymmetric cryptosystems may have a serious security threat in near
future. Hence the there is a need of other approaches in construction of asymmetric
cryptosystems to withstand the new challenge of quantum computing.

New ideas in public key cryptography using hard problems in infinite non-
commutative groups and semigroups appeared in [6]. One realization of these ideas
appeared in [1], using the braid group as a platform. The security of this cryptosystem
was based on conjugator search problem. But according to [5], this approach is not
sufficient and necessary to achieve the proper security.

The other approach to use non-commutative infinite group (e.g., braid group) rep-
resentation was also used for the other kind of one way functions construction as a
background of both digital signature scheme and key agreement protocol [3,4]. Con-
struction of new asymmetric cipher using decomposition (double coset) problem in
matrix semiring M over semiring N of natural numbers is presented in [2].
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We proposed the idea to use two simultaneous problems for the one way function
construction, presented in [4], to construct the asymmetric cipher. The idea is to use
matrix group conjugacy problem together with matrix discrete logarithm problem. We
will make a conjecture supported by our analysis, that these two simultaneous prob-
lems are intractable and hence proposed function is a good candidate to be an OWF.

In this paper we analyze security aspects of CSP and DLP in matrix field over some
finite field. The construction of asymmetric cipher protocol with a brief mathematical
background is presented in Section 2. Section 3 provides considerations on the prelim-
inary security analysis. The main conclusions about the security analysis of proposed
algorithms are outlined in Section 4.

1. Asymmetric cipher protocol

We will use the previously proposed idea to use two simultaneous problems for the
key agreement protocol [4] for asymmetric cipher construction. For this we use the
following algebraic structures:

• the matrix ring M consisting of m x m dimensional matrices over the finite field
Zq = {0,1, . . . , q − 1}, where q is prime number;

• the set P = {pi( )} of all polynomials over Zq ;
• the subset ML of mutually commutating m-dimensional matrices. Then for all

matrices ML1, ML2, ∈ML:

ML1 · ML2 = ML2 · ML1.

Let these matrices have the following form:

ML1 =
(

L1 �

� g1I

)
, ML2 =

(
g2I �

� L2

)
,

where � is m/2-dimensional zero matrix; L1 and L2 are m/2 - dimensional square
matrices over Zq ; I is m/2-dimensional identity matrix; g1 and g2 are the numbers
in Zq .

By having matrices ML1 and ML2 and some polynomials pX1, pX2 we calculate
secret matrix X in the following way:

X = pX1(ML1) · pX2(ML2)

= (
a10I + a11M

1
L1 + · · · + a1nM

n
L1

) · (a20I + a21M
1
L2 + · · · + a2nM

n
L2

)
, (1)

where polynomials pX1, pX2 ∈ P are secret and chosen at random, i.e., coefficients
of polynomial are secret and randomly generated. The main condition for matrix X is
that there must exist inverse matrix X−1. Then there must exist pX1( )−1, pX2( )−1:

pX1(ML1)
−1 · pX1(ML1) = pX1(ML1) · pX1(ML1)

−1 = 1,

pX2(ML2)
−1 · pX2(ML2) = pX2(ML2) · pX2(ML2)

−1 = 1.

This means that for certain subset PF ∈ P , there exist some subring MF of matrices
in M, which is a field. For the protocol construction let us choose at random any
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matrix Q in M not equal to ML1 and ML2. We choose also at random secret integer
number r ∈N . By having instances X,Q and r , we compute the matrix A as follows:

A = XQrX−1. (2)

The asymmetric cipher we declare the following public parameters: sets M and P ;
subset ML and matrices ML1, ML2, Q. For the public key (P uK) we can define the
matrices A and Q and for the private key (P rK) – matrix X and secret integer number
r . In brief, these keys are denoted by P uK = {A,Q} and P rK = {X,r} correspond-
ingly. Instead of storage matrix X, it is possible to store the coefficients of polynomial
pX1, pX2. Then for the ciphering procedure matrix Xmust be computed using (1).
This has some sense since P rK must be carefully stored in some memory restricted
electronic device. Then instead of storing matrix X with m2 matrix elements in Zq , we
can store the only 2(n+1) numbers in Zq , representing the coefficients of polynomial
pX1, pX2.

Since P uK = {A,Q} is publicly available, it can be stored without the significant
concern to reduce its bit length.

The example of key lengths is presented below in Section 3.
To describe the ciphering processes we need to introduce the definition of encryptor

and decryptor operators, using randomly chosen secret matrix Y ∈ MF . This matrix
is calculated analogously as matrix X, but using some random polynomials pY1( ),
pY2( ) ∈ P , secret coefficients b1 = (b10, b11, . . ., b1n), b2 = (b20, b21, . . ., b2n):

Y = pY1(ML1) · pY2(ML2)

= (
b10I + b11M

1
L1 + · · · + b1nM

n
L1

) · (b20I + b21M
1
L2 + · · · + b2nM

n
L2

)
. (3)

Of course, the same condition, as for matrix X, must be satisfied: there must exist
inverse matrix Y−1, i.e., there must exist pY1( ) and pY2( )−1.

DEFINITION 1. Encryptor ε is an element in M, which is calculated by following
equation by choosing secret random number s ∈N :

ε = YAsY−1. (4)

DEFINITION 2. Decryptor δ is an element in M, which is calculated by following
equation by choosing secret random number s ∈N :

δ = YQsY−1. (5)

Since the finite elements of Zq can be transformed to the binary form, we define
the bitwise XOR operation in Zq for any finitely presented numbers.

DEFINITION 3. The bitwise XOR operation ⊕ of numbers in Zq is a sum modulo
2 of bits of these numbers presented in binary form.
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Suppose Alice wants to send Bob a message t , encrypted by asymmetric cipher. For
encryption Alice uses Bob’s public key P uK . The decryption is provided by Bob’s
private key P rK .

At first, to encrypt a message t Alice must perform an encoding of message t by
the set of numbers in Zq and to form a m-dimension encoded matrix T , corresponding
to t .

The asymmetric cipher encryption algorithm is the following.
Step 1: Alice takes M matrix, chooses polynomials pY1() and pY2() in P with secret

random generated coefficients, and using (2), calculates secret matrix Y which has
inverse matrix Y−1.

Step 2: Alice takes Bob’s PuK and using (3) calculates encryptor ε.
Step 3: Alice calculates decryptor δ using (4) in a similar way.
Step 4: Alice obtains the cyphertext C computed by the formula:

C = ε ⊕ T = YAsY−1 ⊕ T . (6)

Step 5: Alice sends to Bob the following data D = {C,δ}, which is ciphertext for T .
Decryption algorithm:
Bob gets data D = {C,δ} and using his private key P rK calculates the encoded

plaintext T by equation:

XδrX−1⊕ = T . (7)

The last equation is valid since the following identities hold XY = YX and X−1Y−1 =
Y−1X−1. Indeed using these commutation identities we obtain the following:

XδrX−1 ⊕ C = X
(
YQsY−1)r

X−1 ⊕ YAsY−1 ⊕ T

= XYQsrY−1X−1 ⊕ Y
(
XQrX−1)sY−1 ⊕ T

= XYQsrY−1X−1 ⊕ YXQrsX−1Y−1 ⊕ T

= XYQsrY−1X−1 ⊕ XYQsrY−1X−1 ⊕ T . (8)

Then Bob, using the known decoding procedure, recovers the initial message t from T .

2. Preliminary security analysis

The security of proposed asymmetric cipher relies on OWF, which is based on two
simultaneous problems: the matrix conjugator search problem (MCSP) and matrix dis-
crete logarithm problem (MDLP).

DEFINITION 4. The MCSP is for given instances Q and A to find the conjugator
matrix X from the following equation:

A = XQX−1. (9)

The MCSP alone in matrix field does not provides a sufficient security since its
solution can be performed by polynomial time algorithm. The unknown matrix X
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from (9) can be found by solving the following homogenous matrix equation, which
corresponds to the homogenous system of linear equations:

AX − XQ = 0.

DEFINITION 5. The MDLP is to find a natural r for given m-dimensional matri-
ces Q and P , satisfying the following equation:

P = Qr.

This problem can be reduced to the multiple ordinary DLP when Q can be trans-
formed to the diagonal form. If Q has a block diagonal form, the initial m-dimensional
MDLP can be spitted to several li -dimensional matrix DLP where l1 . . . , lk are dimen-
sions of corresponding k blocks.

To break the proposed cipher, the adversary must find the P rK = (X, r). Then
he/she must solve the following system of the following matrix equations:{

AX = XP,

P = Qr.

The first matrix equation could be transformed into multivariate quadratic equation
with 2(n+1) unknowns.

The second one corresponds to the MDLP. We have no known algorithms suitable
to solve this system except the brute force attack, i.e., the total scan of solution.

The preliminary analysis shows, that MCSP and MDLP in this case can not be
solved separately. Since the total complexity is composed by both matrix MCSP and
MDLP, we can make a conjecture that proposed asymmetric cipher security level is
sufficient at this time if the cipher parameters are chosen in such way that they prevent
the brute force attack.

The proposed cipher’s algorithm depends on the following parameters:
– the dimension of matrices m;
– the order q of finite field Zq ;
– the order n of polynomials;
– the magnitude of secret integer numbers (r, s).
The greater values q, n and (r, s) are, the higher security against the brute force

attack can be achieved. The P rK and P uK lengths depend on the values of these
parameters. Hence can be treated as security parameters of proposed cipher algorithm.

Let us, for example, choose the values q = 61, n = 12, m = 10, r = 2128, then the
total scan set number of verification consist of operations about η = 2256. Since the ma-
trix Xof private key P rK = {X,k} can be represented by the vectors of polynomials’
coefficients, then the length of P rK is 256 bits. The representation of P uK = {A,Q}
requires 4608 bits. Hence, the PrK compromitation by applying the brute force attack
has 2256 complexity.

According to the choosen parameters the ciphering procedure will take about log2 r

m-dimensional matrix multiplications. In total it is required to perform the m2 log2 r

multiplication operations in the small field, e.g., in the field of order 61. These oper-
ations can be performed using the table. In our parameters collection this takes about
10,000 multiplications with multiplication table of order 61 × 61.
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For example, for the RSA asymmetric cipher with key length of 4096 bits it is
required to perform several thousands multiplications to calculate the exponent in the
ring of order 24096.

As we see the amount of calculations in our system is similar to the amount of
calculations in RSA. Furthermore, the private key length in our system is ten times
shorter than is classical systems.

3. Conclusions

This paper presents the new asymmetric cipher scheme based on new one way function
(OWF). The new OWF is constructed using two simultaneous problems: the matrix
conjugator search problem (MCSP) and matrix discrete logarithm problem (MDLP)
over the finite field Zq .

So far, there are no known deterministic algorithms allowing to solve simultane-
ously the MCSP and MDLP. Since nor MCSP neither MDLP can not be solved sep-
arately, the security of proposed asymmetric cipher relies on the brute force attack
prevention. The paper presents the secure parameters values, which shows that the
private key length in our system is ten times shorter than is classical systems. The
computation amount of presented system is comparable to the classical systems.
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REZIUMĖ

A. Raulynaitis, A. Venclovienė. Asimetrinio šifravimo algoritmas, paremtas jungtinumo ir diskretaus
logaritmo problemomis

Šiame straipsnyje yra pasiūlytas asimetrinis šifravimo algoritmas, kuris realizuojamas matricos lauke.
Asimetrinio šifravimo mechanizmas turi būti konstruojamas,naudojantvienkrypt ↪efunkcij ↪a. Pateiktasalgo-
ritmas yra paremtas vienkrypte funkcija, kuri sukonstruota naudojant iš karto dvi skaičiavimo problemas:
jungtinuko suradimo problem ↪a (JPS) ir modikuot ↪a diskrečiojo algoritmo problem ↪a (DAP). Algoritmo kon-
strukcija neleidžia atlikti kriptoanaliz ↪e, išskaidant skaičiavimo problemas JSP ir DAP bei jas sprendžiant
atskirai.

Raktiniai žodžiai: asimetrinis šifravimo algoritmas, jungtinuko suradimo problema, diskretaus logaritmo
problema, vienkryptė funkcija.


