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Abstract. In the article, a loop-free calculus for modal logic K4 is presented. The calculus is based on
marks and indices method which was first used for logic S4.
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1. Introduction

For such popular knowledge logics as S4 and K4 cut-free calculi are developed and
known. These calculi provide a good way of finding derivation of derivable sequents,
but are not always able to say that the sequent is not derivable. This is because deriva-
tions in the calculi can repeat themselves and form loops. A lot of effort now are put
into finding an effective procedure to eliminate these loops. One of the new methods
is called marks and indices. This method was first introduced in [3] for modal logic
S4 and our aim is to extend it to the logic K4. For other methods of effective decision
procedures the reader could refer to [1] or [2].

2. Gentzen-type calculi

First we define the Gentzen-type calculus for modal logic K4. This definition is tradi-
tional and the loops are possible in the derivations in this calculus.

DEFINITION 1. The Gentzen-type calculus for modal logic K4 (GK4) consists of
axiom �,A → A,�, traditional propositional rules for logical operators and the modal
rule of transitivity:

��1,�1 → A

��1,�2 → �,�A
(�).

The main cause of loops is the transitivity rule, so we must restrict the applications
of this rule. To obtain the restrictions we first number all the occurrences of the in-
dexed modality �, which can produce loops. In order to obtain termination we number
all the occurrences of strongly special modality in the sequent with different indices
from the set {◦1,◦2, . . .} and all the occurrences of simply special modality with dif-
ferent indices from the set {1,2, . . .}. These two indices are used for logic S4 in [3]
too. However we also must number all the negative occurrences of modality � with
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different indices from the set {�1,�2, . . .}. After the numbering, the sequent is called
indexed and is denoted Sind. We say that modality �i or �◦k is positively indexed and
modality ��l is negatively indexed.

Finally to define the calculus without loops we need several more definitions.

DEFINITION 2. A decomposition of formula A is a pair <A,S >, where A and S
are the sets of some subformulas of A, A is called an antecedental part and S is called
a succedental part.

DEFINITION 3. If D1 and D2 are the sets of decompositions of some formula, then
the product of D1 and D2 is a set of decompositions:

D1 ×D2 = {〈A,S〉 :A =A1 ∪A2,S = S1 ∪S2, 〈A1,S1〉 ∈D1, 〈A2,S2〉 ∈ D2
}
.

DEFINITION 4. A decomposition function d(A,s), where A is some formula and
s ∈ {+,−}, is defined in a following way:

1. d(A,+) = {〈
∅, {A}〉}, if A is a propositional variable or A = �σB, where σ ∈

{i,◦k,+}.
2. d(A,−) = {〈{A},∅〉}

, if A is a propositional variable or A = �σB, where σ ∈
{�l,∗}.

3. d(¬B,s) = d(B,¬s), where ¬s =
{− if s = +

+ if s = − .

4. d(B ∨ C,+) = d(B,+) × d(C,+).
5. d(B ∨ C,−) = d(B,−) ∪ d(C,−).
6. d(B ∧ C,+) = d(B,+) ∪ d(C,+).
7. d(B ∧ C,−) = d(B,−) × d(C,−).
8. d(B ⊃ C,+) = d(B,−) × d(C,+).
9. d(B ⊃ C,−) = d(B,+) ∪ d(C,−).

Before defining the calculus without loops we first define a calculus, which will
be used in later proofs. Here and later notation Ai+, A◦k+ and A�l∗ will be used.
This means that in formula A an occurrence of modality �i (�◦k or ��l respectively)
is replaced by marked modality �+ (�+ or �∗). Obviously, if � = A1, . . . ,An, then
�σ = Aσ

1 , . . . ,Aσ
n , �∅ = � and �{σ1,...,σn} = ((�σ1)...)σn .

We use the same definition of primary sequent as in [3], however our calculus
slightly differs from the one for S4.

DEFINITION 5. An indexed Gentzen-type calculus for logic K4 (G1K4) consists of
axiom �,p → p,�, where p is a propositional variable, traditional logical rules and
rules of transitivity:

1. Antecedental transitivity rule:

�∗Aτ
1,A

τ
1 , . . . ,�∗Aτ

n,A
τ
n,�∗�τ ,�τ → Aτ

��i1A1, . . . ,��inAn,�∗�,�1 → �2, �̃�,�σA
(�∗),

where σ ∈ {∅, i,◦k,+}, τ = {�i1∗, . . . ,�in∗} and n >= 1.
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2. Non-indexed transitivity rule:

�∗�,� → A

�∗�,�1 → �2,��,�A
(�p).

3. Strong transitivity rule:

�∗�σ+,�σ+ → A

�∗�,�1 → �2, �̃�,�σA
(�σ+

p ).

Here σ ∈ {i,◦k} and if σ = i, then this rule can only be applied if the formula A

does not contain any positively indexed modality and if there are no modalities of
the type �◦k in �.

4. Weak transitivity rule:

�∗�,�i+ → A

�∗�,�1 → �2, �̃�,�iA
(�i

p).

This rule can only be applied if there is at least one modality of the type �◦k in �.
5. Mixed transitivity rule:

�∗�{α1}∪β1,�{i+}∪β1 ,A1 → S1 . . . �∗�{αn}∪βn,�{i+}∪βn ,An → Sn

�∗�,�1 → �2, �̃�,�iA
(� i?

p )

for all 〈Ai ,Si〉 ∈ d(A,+). Moreover, for every i = 1, . . . ,n, if Si contains at
least one formula, which contains at least one positively indexed modality, then
αi = βi = ∅. Otherwise, αi = i+, and βi = {j+ : A contains a positively indexed
modality �j }. This rule can only be applied if the formula A contains at least one
positively indexed modality and if there are no modalities of the type �◦k in �.

6. Marked transitivity rule:

�∗�i+
1 ,�i+

1 → A

�∗�,�1 → �2, �̃�,�+A
(�+

p ).

DEFINITION 6. A sequent is derivable in G1K4 if there is a derivation V and every
branch of V finishes with an axiom.

Using an invertibility of logical rules we can prove the following:

LEMMA 1. The sequent S is derivable in GK4 if and only if the sequent Sind is
derivable in G1K4.

However G1K4 can still contain loops. The only problem now is the rule (�+
p ). So

our aim now is to eliminate this rule from the calculus.

DEFINITION 7. A Gentzen-type calculus for K4 without loops (G2K4) contains the
same rules and axiom as calculus G1K4, except the rule (�+

p ).
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It is easy to see that:

LEMMA 2. If the sequent is derivable in G2K4, then it is derivable in G1K4.

So only the reverse proof is left. To prove that, we will have to define the strategy
of the derivation.

3. Termination

To define the strategy, which provides order in which rules must be chosen in the
derivation, we need the definition of degree of a formula, which can be found in [3].
The definition of strategy is also based on the one found in [3].

DEFINITION 8. It is said that the derivation V in G1K4 (or in G2K4) is constructed
using the strategy, if for any application of the rule j in V with sequent S in the
conclusion the following holds:

1. If it is possible to apply some logical rule to S, then j is a logical rule.
2. Otherwise, if it is possible to apply antecedental transitivity rule to S, then j

is (�∗).
3. Otherwise, if it is possible to apply non-indexed transitivity rule to S, then j

is (�p).
4. Otherwise, if it is possible to apply strong transitivity rule to S, then j is (� i+

p )

for some i.
5. Otherwise, if it is possible to apply weak (mixed) transitivity rule to S, then j

is (�i
p) ((� i?

p )). If S is of the form �∗�,�1 → �2, �̃�, then there must be no
subformulas of the main formula (�iA) in �̃� and:

a) If there is a formula in �̃�, which starts with indexed modality and contains
an occurrence of strongly special modality, then the formula with the largest
degree from the set of �̃� formulas that start with indexed modality and
contain an occurrence of strongly special modality is chosen as the main
formula.

b) Otherwise the formula with the largest degree from the set of �̃� formulas
that start with indexed modality is chosen as the main formula.

The derivation, that is constructed using the strategy is called ordinary derivation.

It is possible to prove the following lemma:

LEMMA 3. If the sequent Sind is derivable in G1K4, then it is possible to construct
an ordinary derivation of Sind in G1K4.

Now we have to show, that if the derivation follows the strategy, then it always
terminates. This statement is true only for G2K4 and we need several definitions to
prove that. First of all, let P(A) denote the set of all the subformulas of formula A,
that are of the form �σB, where σ ∈ {i,◦k,+}.
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DEFINITION 9. Say that we have a sequent S = �∗�1,��l�2,�3 → � and the set
�3 does not contain any formula, of the form �∗D or ��lE. Then the set of possible
formulas of S (denoted I(S)) is defined in a following way: for any formula A ∈
�3 ∪�, if B ∈ P(A), B = �σC, where σ ∈ {i,◦k}, and B is not a strict subformula of
any formula from P(A), then B ∈ I(S).

DEFINITION 10. Say that S is a sequent with the set of possible formulas I(S).
Then formula A ∈ I(S) is preferable if any formula B ∈ I(S) is not a strict subformula
of A.

The termination of the derivation in G2K4 can be shown by providing a tuple, which
always decreases in the derivation. The tuple is similar to the one in [3].

DEFINITION 11. A complexity of a sequent S is an ordered tuple C(S) =
〈k(S), r(S),m(S),p(S), l(S)〉, where:

• k(S) is the number of formulas of the type �A in the succedent of S;
• r(S) is the number of different indices of type �l in S;
• m(S) is the number of different indices of type i and ◦k in S;
• p(S) is the number of different subformulas of the shape �iA and �◦kA of the
formulas from the set of preferable formulas of the sequent S;

• l(S) is the sum of the lengths of formulas of sequent S, which is defined in a
traditional way.

It can be shown that after the application of the rule (�p) the value of the function
k decreases. After the application of (�∗) the value of k stays the same, but the value
of r decreases. After the application of (� i+

p ) the values of k and r do not increase and
the value of m decreases. After the application of (�i

p) or (� i?
p ) the values of k, r and

m do not increase and the value of p decreases and after the application of logical rule
the values of k, r , m and p do not increase but the value of l decreases. So to sum up,
we can prove the following:

THEOREM 1 (termination of derivation). Let P be an ordinary derivation in G2K4.
Then for any application of rule j in the proof with the conclusion S and premises
S1 ,. . . ,Sn for all i = 1, . . . ,n C(S) > C(Si).

From this theorem and from the definition of calculus G2K4 the following can be
proved:

COROLLARY 1. The ordinary derivation of sequent in G2K4 always terminates.
More precisely, all the branches of the derivation always finishes either with an axiom
or with a sequent of the form �∗�,�1 → �2,�+�, which is called a final sequent.
Here �1 ∩ �2 = ∅ and both �1 and �2 contain only propositional variables.

So the calculus G2K4 does not contain loops, however backtracking is still needed.
Having in mind the invertibility of the logical rules, the search of the derivation could
contain the following steps:
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1. The logical rules are applied as long as they can be applied. We do not need to
return to these applications, because all the logical rules are invertible.

2. If the sequent is not final, the transitivity rule is chosen according to the strategy.
3. If the sequent is final, we must go back to the last application of the transitiv-

ity rule and consider other main formulas, if they are possible according to the
strategy.

4. Completeness

To show the completeness of the calculus G2K4, we need to show that the rule (�+
p ) is

not needed for the calculus G1K4. This can be demonstrated by proving the following:

LEMMA 4. If the sequent Sind is derivable in G1K4, then any ordinary derivation
V of S does not contain final sequents.

Having in mind Lemma 4 and the fact that according to Definition 8 in ordinary
derivations the rule (�+

p ) can only be applied to the final sequents, we can show that:

COROLLARY 2. If the sequent Sind is derivable in G1K4, then any ordinary deriva-
tion V of S does not contain applications of rule (�+

p ).

The completeness of the calculus G2K4 follows easily:

LEMMA 5. If the sequent Sind is derivable in G1K4, then it is derivable in G2K4.

Finally, using Lemmas 1 and 5 we get the proof of the final theorem.

THEOREM 2. The sequent S is derivable in GK4 if and only if the sequent Sind is
derivable in G2K4.
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REZIUMĖ

J. Andrikonis. Beciklis sekvencinis skaičiavimas modalumo logikai K4

Straipsnyje pateikiamas modalumo logikos K4 skaičiavimas be cikl ↪u. Šis skaičiavimas yra paremtas žymi ↪u
ir indeks ↪u metodu, kuris pirm ↪a kart ↪a buvo panaudotas logikai S4.

Raktiniai žodžiai: žymi ↪u ir indeks ↪u metodas, K4, skaičiavimas be cikl ↪u.


