About the equivalent replaceability of the double induction axiom

Livija MALIAUKIENĖ

Vilnius Pedagogical University
Studentų 39, 2034 Vilnius, Lithuania
e-mail: maliaukiene@vpu.lt
Abstract. In this paper the first order predicate calculus with the axioms of additive arithmetic is investigated. The conditions of the equivalent replaceability of a double induction axiom is presented.

Keywords: sequent calculus, additive arithmetic, double induction axiom.

1. Introduction

In the systems without the restricted difference the axiom of double induction (ADI) is definitely stronger than the usual axiom of induction. J.R. Shoenfield [1] was investigating (by using the models theory) the replaceability of the usual induction rule (RI) with the open induction formula in additive arithmetic, containing the axioms B1-B6 and showed that the axioms B5 and B6 are not provable by RI, but are provable by using the rule of double induction (RDI). J.C. Sheperdson [2] has risen also a question - how strong RDI is.

In this paper we will finish the investigation (which has begun in [3,4] and [5]) of equivalent replaceability of a double induction axiom in the additive arithmetic.

2. Description of basic calculi

Let Z_{0} be the sequential variant of the first order predicate calculus with the signature $\{=$ (equality), 0 (zero), ' (successor), P (predecessor), + (plus) $\}$ and usual rules for the logical symbols (see, e.g., [3]); structural rules, cut rule

$$
\frac{\Gamma \rightarrow Z, \mathcal{F} ; \mathcal{F}, \Delta \rightarrow \Lambda}{\Gamma, \Delta \rightarrow Z, \Lambda}
$$

substitution rules

$$
\frac{\Gamma_{d}^{\alpha}, c=d, \Delta_{d}^{\alpha} \rightarrow Z_{d}^{\alpha}}{\Gamma_{c}^{\alpha}, c=d, \Delta_{c}^{\alpha} \rightarrow Z_{c}^{\alpha}}\left(S_{1}\right) \quad \frac{\Gamma_{d}^{\alpha}, d=c, \Delta_{d}^{\alpha} \rightarrow Z_{d}^{\alpha}}{\Gamma_{c}^{\alpha}, d=c, \Delta_{c}^{\alpha} \rightarrow Z_{c}^{\alpha}}\left(S_{2}\right)
$$

(where $\Gamma, \Delta, Z, \Lambda$ are finite (probably, empty) sequences of the formulae; the expression Γ_{β}^{α} denotes substitution β for every occurrence of α in every formula of $\Gamma ; \mathcal{F}$ is formula, t is an arbitrary term), axioms

$$
\mathrm{P} 1 . \Gamma, \mathcal{F}, \Delta \rightarrow Z, \mathcal{F}, \Lambda, \quad \mathrm{P} 2 . \Gamma \rightarrow Z, t=t, \Lambda
$$

A1. $\rightarrow t^{\prime} \neq 0$,
A2. $\rightarrow P 0=0$,
A3. $\rightarrow P t^{\prime}=t$,
A4. $\rightarrow t+0=t$,
A5. $\rightarrow t+s^{\prime}=(t+s)^{\prime}$
and the axiom of double induction (ADI):

$$
\forall x \mathcal{A}(x, 0) \& \forall y \mathcal{A}(0, y) \& \forall x y\left[\mathcal{A}(x, y) \supset \mathcal{A}\left(x^{\prime}, y^{\prime}\right)\right] \rightarrow \forall x y \mathcal{A}(x, y)
$$

for all \exists-reduced formulae $\mathcal{A}(x, y)$.
Let \tilde{Z} be the system, obtained form Z_{0} by replacement of the ADI by the following axioms:

B1. $\rightarrow t \neq 0 \supset(P t)^{\prime}=t$,
B2. $\rightarrow t+s=s+t$,
B3. $\rightarrow(t+s)+r=t+(s+r)$,
B4. $\rightarrow t+s=t+r \supset s=r$,
B5. $\rightarrow n t=n s \supset t=s, n=2,3, \ldots$,
B6. $\rightarrow m t+n \neq m s, 0<n<m$,
B7. $\rightarrow t \neq s \supset \exists r\left(t+r^{\prime}=s\right) \vee \exists w\left(t=s+w^{\prime}\right)$.
We shall call the formulas of the form $m x+q=t, m y+q=t, m x+n y+q=t$, $m x+q=n y+t$, where x, y are free variables; $m \neq 0, n \neq 0$ are the natural numbers; q, t be a terms, that do not contain the variables x and y, substantial elementary formulas and the formulas of the form $x=y \vee \exists c\left(x+c^{\prime}=y\right) \vee \exists c\left(x=c^{\prime}+y\right)-$ \exists-elementary formulas of the calculus Z_{0} (also and of the calculus \tilde{Z}).

The formula $\mathcal{A}(x, y)$ of the calculus \tilde{Z} we shall call \exists-reduced, if there is of the form

$$
\begin{equation*}
\bigvee_{i \in \mathcal{U}} B_{i}(x, y)=\bigvee_{i \in \mathcal{U}}\left(\underset{j \in R_{1 i}}{\&} \mathcal{E}_{i j}(x, y) \underset{j \in R_{2 i}}{\&} \neg \mathcal{E}_{i j}(x, y) \underset{j \in R_{3 i}}{\&} \tilde{\mathcal{E}}_{i j}(x, y) \& D_{i}\right) \tag{1}
\end{equation*}
$$

where $\mathcal{E}_{i j}(x, y)$ are substantial elementary formulas; $\tilde{\mathcal{E}}_{i j}(x, y)$ are \exists - elementary formulas or the negations of theirs; D_{i} is a formula that does not contain variables x and $y ; \mathcal{U}, R_{1 i}, R_{2 i}, R_{3 i}(i \in \mathcal{U})$ are finite subsets of the set of natural numbers, and the definition of the set \mathcal{U} is detailed in such way:

1) $\mathcal{U}=\bigcup_{k=1}^{4} \mathcal{U}_{k}, \bigcap_{k=1}^{4} \mathcal{U}_{k}=\varnothing$,
2) when $i \in \mathcal{U}_{1}$, then $R_{1 i} \neq \varnothing$,
3) when $i \in \mathcal{U}_{2}$, then $R_{1 i}=\varnothing$ and $R_{2 i} \neq \varnothing$,
4) when $i \in \mathcal{U}_{3}$, then $R_{1 i}=R_{2 i}=\varnothing, R_{3 i} \neq \varnothing$,
5) when $i \in \mathcal{U}_{4}$, then $R_{1 i}=R_{2 i}=R_{3 i}=\varnothing$.

3. The basic theorems

THEOREM 1. Let $\mathcal{A}(x, y)$ be an \exists-reduced formula of the calculus \tilde{Z}, then ${ }^{1}$

$$
\stackrel{\vdash_{\tilde{Z}}}{ } A D I .
$$

Really, if the induction formula $\mathcal{A}(x, y)$ is open, then we shall in usual way (see, e.g., [3]) reconstruct it into the disjunctive normal form

$$
\bigvee_{i \in \mathcal{U}} B_{i}(x, y)=\bigvee_{i \in \mathcal{U}}\left(\underset{j \in R_{1 i}}{\&} \mathcal{E}_{i j}(x, y) \underset{j \in R_{2 i}}{\&} \neg \mathcal{E}_{i j}(x, y) \& D_{i}\right)
$$

where $\mathcal{E}_{i j}(x, y)$ are substantial elementary formulas; $\mathcal{U}, R_{1 i}, R_{2 i}(i \in \mathcal{U})$ are finite subsets of the set of natural numbers; D_{i} is a formula that does not contain variables x and y.

If $\mathcal{A}(x, y)$ is an \exists-reduced formula, its d.n.f. has a shape (1).
Let η be the number of the elements of the $\operatorname{set} \mathcal{U} ; \mu_{i}$ be the number of the conjuncts in the disjunct $B_{i}(x, y)$ and we shall mark

$$
\sigma=\eta+\max _{1 \leqslant i \leqslant \eta} \mu_{i}
$$

The consequences of the sequent

$$
\forall x \mathcal{A}(x, 0) \& \forall y \mathcal{A}(0, y) \& \forall x y\left[\mathcal{A}(x, y) \supset \mathcal{A}\left(x^{\prime}, y^{\prime}\right)\right] \rightarrow \forall x y \mathcal{A}(x, y)
$$

are the sequents

$$
\begin{equation*}
\underset{\xi=0}{\mu_{i}}\left(B_{i}\left(\nu_{\xi}+\varepsilon, \nu_{\xi}\right) \& B_{i}\left(\tau_{\xi}+\omega, \tau_{\xi}\right)\right), \Gamma \rightarrow \Delta \tag{2}
\end{equation*}
$$

where $\Gamma \rightleftharpoons \forall x \mathcal{A}(x, 0) \& \forall y \mathcal{A}(0, y) \& \forall x y\left[\mathcal{A}(x, y) \supset \mathcal{A}\left(x^{\prime}, y^{\prime}\right)\right] ; \quad \Delta \rightleftharpoons \mathcal{A}(a, b) ; a, b$ be parameters that do not occur in $\Gamma ; \nu, \tau, \varepsilon, \omega, \xi \in N ; \omega \neq \varepsilon ; \nu_{l} \neq \nu_{k}, \tau_{l} \neq \tau_{k}$, if $l \neq k ; l, k \in N$.

For the sequent (2) are possible the following cases: $i \in \mathcal{U}_{1}$ or $i \in \mathcal{U}_{2}$, then proof of the sequent (2) is constructed analogously, as in [4] (see Lemma 2 and Theorem 2). If $i \in \mathcal{U}_{3}$, then $R_{1 i}=R_{2 i}=\emptyset$ and

$$
B_{i}(x, y)=\underset{j \in R_{3 i}}{\&} \tilde{\mathcal{E}}_{i j}(x, y) \& D_{i}
$$

where $\tilde{\mathcal{E}}_{i j}(x, y)$ are an \exists-elementary formulas or the negations of theirs; D_{i} is a formula that does not contain variables x and y. Let

$$
R_{3 i}=\bigcup_{k=1}^{4} R_{3 i_{k}}, \quad \bigcap_{k=1}^{4} R_{3 i_{k}}=\emptyset .
$$

[^0]If $j \in R_{3 i_{1}}$ (analogously, $\left.R_{3 i_{2}} ; \quad R_{3 i_{3}} ; \quad R_{3 i_{4}}\right)$ then $\tilde{\mathcal{E}}_{i j}(x, y)=\exists c_{i j}\left(x+c_{i j}^{\prime}=\right.$ $y)\left(\exists c_{i j}\left(x=c_{i j}^{\prime}+y\right) ; \neg \exists c_{i j}\left(x+c_{i j}^{\prime}=y\right) ; \neg \exists c_{i j}\left(x=c_{i j}^{\prime}+y\right)\right)$.

Let $R_{3 i_{1}} \neq \emptyset$, then we can get from the sequent (2) the sequent $\rightarrow(\varepsilon+h)^{\prime} \neq 0$, i.e., the axiom A1. Analogously, if $R_{3 i_{1}}=\emptyset, R_{3 i_{2}} \neq \emptyset$. In the cases $R_{3 i_{1}}=R_{3 i_{2}}=$ $\emptyset, R_{3 i_{3}} \neq$ or $R_{3 i_{4}} \neq \emptyset$, the consequences of the sequent (2) are

$$
a+q^{\prime}=b, \Gamma \rightarrow \Delta \quad \text { or } \quad a=q^{\prime}+b, \Gamma \rightarrow \Delta
$$

(where q is a term that not occur in Γ). These sequents can be proved in analogical way like in Theorem 1 of [3].

THEOREM 2. The calculus Z_{0} and \tilde{Z} are equivalent:

$$
Z_{0} \Leftrightarrow \tilde{Z}
$$

Proof. Part I. The axiom ADI with \exists-reduced induction formula $\mathcal{A}(x, y)$ is provable in the calculus \tilde{Z} by Theorem 1 .

Part II. We must show that the all axioms of the calculus \tilde{Z} are provable in the calculus Z_{0}. The axioms B1-B4 are provable by the usual induction axiom (see, e.g., [1,2]), so they all the more are provable by the ADI. The axioms B5, B6 can not be proved by the usual induction axiom, we can prove them by ADI (see [4]). Let

$$
\mathcal{A}(t, s) \rightleftharpoons t \neq s \supset \exists r\left(t+r^{\prime}=s\right) \vee \exists \omega\left(t=\omega^{\prime}+s\right)
$$

then basis for the axiom B7 is the sequent

$$
\rightarrow \mathcal{A}(t, 0), \quad \text { i.e., } \rightarrow t \neq 0 \supset\left(\exists r\left(t+r^{\prime}=0\right) \vee \exists \omega\left(t=\omega^{\prime}\right)\right),
$$

and from that follow $\rightarrow t \neq 0 \supset t=(P t)^{\prime}$, i.e., the axiom B1. The provability of the sequent $\rightarrow \mathcal{A}(0, s)$ is showed analogously.

Induction step. The proof of the sequent

$$
\rightarrow(t \neq s \supset \Gamma) \supset\left(t^{\prime} \neq s^{\prime} \supset \Delta\right)
$$

$\left(\right.$ where $\left.\Gamma \rightleftharpoons \exists r\left(t+r^{\prime}=s\right) \vee \exists w\left(t=s+w^{\prime}\right) ; \Delta \rightleftharpoons \exists r\left(t^{\prime}+r^{\prime}=s^{\prime}\right) \vee \exists w\left(t^{\prime}=s^{\prime}+w^{\prime}\right)\right)$ consisting of the branches:

$$
\begin{gathered}
\rightarrow t^{\prime} \neq s^{\prime} \supset t \neq s, \Delta ; \quad t^{\prime} \neq s^{\prime}, \exists r\left(t+r^{\prime}=s\right) \rightarrow \exists r\left(t^{\prime}+r^{\prime}=s^{\prime}\right) \\
t^{\prime} \neq s^{\prime}, \exists \omega\left(t=\omega^{\prime}+s\right) \rightarrow \exists \omega\left(t^{\prime}=\omega^{\prime}+s^{\prime}\right)
\end{gathered}
$$

The all of theirs can be reduced to the sequents

$$
\rightarrow t^{\prime}=t^{\prime} ; \quad \rightarrow s^{\prime}=s^{\prime} \quad \text { and } \quad \rightarrow t^{\prime}=t^{\prime}
$$

accordingly, i.e., to the axiom P2.

References

1. J.R. Shoenfield. Open sentences and the induction axiom. JSL, 23:7-12, 1958.
2. J.C. Shepherdson. A non-standard models for a free variable fragments of number theory. Bull. Acad. Pol. Sci., 12:79-86, 1964.
3. L. Maliaukiene. The provability of certain sequents in the additive arithmetic. Liet. mat. rink., 35(4):518-526, 1995.
4. L. Maliaukienè. The constructive provability of a restricted axiom of double induction in the free variable additive arithmetic. Liet. mat. rink., 37(1):61-70, 1997.
5. L. Maliaukiene. About the some conditions of the replaceability of the double induction. Liet. mat. rink., 48-49:275-277, 2008.

REZIUMĖ

L. Maliaukienė. Apie ekvivalentu dvigubos indukcijos aksiomos pakeičiamuma

Nagrinėjamas ekvivalentus dvigubos indukcijos aksiomos (ADI) pakeičiamumas pirmos eilès predikatų skaičiavime su lygybe ir papildomais simboliais $\left\{0,{ }^{\prime}, \mathrm{P},+\right\}$. Pateikiama baigtiné, neturinti ADI, aksiomų sistema, ekvivalenti pradiniam skaičiavimui.

Raktiniai žodžiai: sekvencinis pirmos eilès predikatų skaičiavimas, adicinė aritmetika, dvigubos indukcijos aksioma.

[^0]: ${ }^{1}$ The expression $\stackrel{\leftarrow}{\vdash} Q$ will denote, that the object Q is deducible in the calculus Z.

