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Abstract. Let us have a sample satisfying d-dimensional Gaussian mixture model (d is supposed to be
large). The problem of classification of the sample is considered. Because of large dimension it is natu-
ral to project the sample to k-dimensional (k =1, 2, ...) linear subspaces using projection pursuit method
which gives the best selection of these subspaces. Having an estimate of the discriminant subspace we can
perform classification using projected sample thus avoiding ’curse of dimensionality’. An essential step
in this method is testing goodness-of-fit of the estimated d-dimensional model assuming that distribution
on the complement space is standard Gaussian. We present a simple, data-driven and computationally effi-
cient procedure for testing goodness-of-fit. The procedure is based on well-known interpretation of testing
goodness-of-fit as the classification problem, a special sequential data partition procedure, randomization
and resampling, elements of sequential testing. Monte-Carlo simulations are used to assess the performance
of the procedure
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Introduction

Let X = X" be a sample of size N satisfying d-dimensional Gaussian mixture model
(we assume that d is large) with distribution function (d.f.) F.

Because of the high dimension of the considered space it is natural to project the
sample X to linear subspaces of dimension k& (k = 1,2,...) using projection pursuit
method. If the distribution of the standardized projected sample on the complementary
space is standard Gaussian this linear subspace H is called discriminant subspace.
E.g., if we have ¢ Gaussian mixture components with equal covariance matrices then
the dimension of the discriminant subspace is equal to g — 1.

Having the estimate of the discriminant subspace it is easier to perform the classifi-
cation using the projected sample.

The step-by-step procedure applied to the standardized sample is the following
(here k =1,2,...,d, until hypothesis of standard Gaussian distribution on the com-
plementary space holds for some k):

1. Finding the best linear subspace of dimension k using the projection pursuit
method (see, e.g., [4]).

2. Estimation of the parameters of Gaussian mixture (see, e.g., [3]) from the sample
projected to the linear subspace of dimension k.



294 G. Jakimauskas

3. Test goodness-of-fit of the estimated model in the d-dimensional space assuming
that distribution on the complementary space is standard Gaussian. If the test fails
we increase k and go to Step 1.

The problems related with the Steps 1 and 2 are considered in abovementioned pa-
pers and in their references. If we use common methods in the Step 3 the problem is
the comparison of some non-parametric density estimate with some parametric den-
sity estimate in high dimensional space. Problems related with high dimensional data
are often referred to as ‘curse of dimensionality’ (see, e.g., [1]). As an alternate ap-
proach we use Monte-Carlo method and special sequential data partition procedure.
More precisely, we resample the given sample assuming that the distribution on the
complementary space is standard Gaussian. For the test statistics we use the joined
sample and calculate number of data points corresponding to the initial and resampled
samples in each partition element. Test statistics is selected in such a way that if the
hypothesis holds the distribution of the test statistics weakly depends on the dimension
d and of the distribution in the linear subspace. Test criterion is obtained by simulating
sufficiently large number (e.g., 100 or 1000) of independent resampled samples for
which the hypothesis holds and comparing test criterion value with predefined level.

The efficiency of the algorithm is based on the weak dependence of the test cri-
terion on the dimension d and the distribution in the linear subspace. Computational
efficiency is based on the very efficient dyadic data partition procedure and very simple
computation of the test statistics.

We will present some computer simulation results. This approach can be used in
other situations, e.g., for testing independence of high-dimensional random vectors
(see [2]).

1. Test criterion

Assume that we have standardized d-dimensional Gaussian mixture model with corre-
sponding d.f. F. Denote by Fpg the d.f. of the corresponding d-dimensional Gaussian
mixture model for which distribution on the complementary subspace of dimension
d—k is standard Gaussian (recall that k is dimension of the linear subspace obtained by
projection pursuit method). Consider the mixture model

Fpy=(0~-p)Fg+pF, pe(,1),

of two populations Qg and 2 with d.f. Fy and F, respectively. Fix p and let Y de-
note a random vector with the distribution function F,. Let (Y) denote the posterior
probability of the population €2 given Y, i.e.

pf(Y)
pf)+ A =p)fu¥)

Here f and fy denote distribution densities of F' and Fp, respectively.

Let Xy be a sample of size M of i.i.d. vectors from Qy independent of X. The
joint sample is denoted by Y, and Z;, j =1,2,..., N + M, is the corresponding se-
quence of indicators of the population Q. Let P ={P;, k=0,1,..., K}, Pp= R be
a sequence of partitions of RY, possibly dependent on Y and let Ax, k=0,1,..., K,

n(Y) = P{Q|Y} =
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be the corresponding sequence of o-algebras generated by these partitions. A com-
putationally efficient choice of P is the sequential dyadic coordinate-wise partition
minimizing at each step mean square error in partition sets. The natural choice of the
test statistics would by x 2-type statistics

Ty =E(Z — p)?, p=N/(N+ M),

where E stands for the expectation with the respect to the empirical distribution FofYy
and Zy = E(Z|Ap), ke {1,2,...,K}.

2. Computer simulation results

For the computer simulation we selected M = N, and the test statistics in explicit form
is given by the following formula:

_Si—Gk=1)

TR k=1.2....K.
SRy

where
1 k 2
ik ik k—=1.2 K
Sk_ZNjEI(}lJ —m’ )’ —1, yeeey 1K,

n’* and, respectively, m/, are number of elements of sample X (respectively, sam-
ple Xy in jth partition element in partition Pg.

We assumed that discriminant space is known exactly (no errors in finding the best
linear subspace). We performed simulations with 100 independent realizations. We
obtained maximum and minimum values of the test statistics of corresponding joint
realizations. Also we obtained minimum and maximum values of the test statistics
excluding 5 per cent highest and 5 per cent lowest values. Dimensions up to 100, ty-
pically 10, were considered. Dimension of the discriminant subspace was chosen in
range 14 (i.e., this dimension depends on the number of mixture components and its
parameters), and corresponding range of dimensions of linear subspaces were consi-
dered.

The results showed very weak dependence on the selected mixture model and the
dimension. Maximum of test statistics excluding 5 per cent highest values appeared to
be the suitable criterion to accept or reject the considered hypothesis.

In Fig. 1 and Fig. 2 we present minimum and maximum values of the test statis-
tics (and excluding 5 per cent extreme values) for an example of 3 component
Gaussian mixture in 10-dimensional space with component means (—4, —1,0, ..., 0),
©,2,0,...,0), (4,—1,0,...,0) and unit covariance matrices. Clearly, the dimension
of the discriminant subspace is equal 2. In Fig. 1 (respectively, in Fig. 2) we projected
to 10-dimensional data to 1-dimensional (respectively, 2-dimensional) subspace.

In Fig. 3 and Fig. 4 we present minimum and maximum values of the test statistics
(and excluding 5 per cent extreme values) for an example of 2 component Gaussian
mixture in 10-dimensional space with zero component means and diagonal covariance
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Fig. 1. Behaviour of maximum and minimum of the test statistics (k = 1).

Fig. 2. Behaviour of maximum and minimum of the test statistics (k = 2).

Fig. 3. Behaviour of maximum and minimum of the test statistics (k = 1).
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Fig. 4. Behaviour of maximum and minimum of the test statistics (k = 2).

matrices with diagonal elements (10, 1, 10,...,1) and (1,10, 1, ..., 1), respectively.
Dimension of the discriminant subspace is equal 2. In Fig. 3 (respectively, in Fig. 4)
we projected to 10-dimensional data to 1-dimensional (respectively, 2-dimensional)
subspace.
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D=

REZIUME

G. Jakimauskas. Efektyvus modelio adekvatumo testavimo algoritmas didelio matavimo duomeny
klasifikavimui

Tegul turime matavimo d imtj, tenkinanc¢ia Gauso miSiniy modelj (laikoma, kad d yra didelis). Na-
grinéjama imties klasifikavimo problema. Dél didelio matavimo yra nattiralu projektuotiimtj i matavimo k
(k=1,2,...) tiesini poerdvi, naudojant tikslinio projektavimo metoda, kuris duoda geriausia Siy poerdviy
parinkima. Turédami diskriminantinés erdves jverti galime atlikti klasifikavima naudodami projektuota
imti, tuo iSvengdami taip vadinamojo ,,dideliy matavimy prakeiksmo* (curse of dimensionality). Esminis
zingsnis Siame metode yra jvertinto matavimo d modelio adekvatumo testavimas, laikant, kad papildo-
moje erdvéje pasiskirstymas yra standartinis Gauso. Mes pateikiame paprasta, veikiancia pagal duomenis
ir skaiiavimy prasme efektyvia procediira modelio adekvatumo testavimui. Si procediira remiasi gerai
zinoma modelio adekvatumo testavimo interpretacija kaip klasifikacijos problema, specialia nuoseklia
duomeny skaidymo procediira, randomizacija ir pakartotiniu imties generavimu, nuosekliosios analizés
elementais. Procediiros efektyvumo ivertinimui naudojami Monte-Carlo metodu generuojami duomenys.

Raktiniai ZodZiai: Gauso miSiniy modelis, modelio adekvatumo testavimas.



