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On measure concentration in graph products
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Abstract. Bollobás and Leader [1] showed that among the n-fold products of connected graphs of order k

the one with minimal t-boundary is the grid graph. Given any product graph G and a set A of its vertices
that contains at least half of V (G), the number of vertices at a distance at least t from A decays (as t grows)
at a rate dominated by P(X1 + . . . + Xn � t) where Xi are some simple i.i.d. random variables. Bollobás
and Leader used the moment generating function to get an exponentialbound for this probability.We insert
a missing factor in the estimate by using a somewhat more subtle technique (cf. [3]).
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1. Introduction and theorem

Consider a finite set [k] consisting of k elements: {0,1, . . . , k − 1}. We may define
various metrics (distances) d on [k]. One of the ways to do that is to consider a graph
G = (V,E) with a vertex set V = [k] and define the distance d(a,b), as the length of
the shortest path between a and b. In order to have a finite metric, we will, of course,
put a restriction that the graph G is connected.

If, for example, we choose G to be a path Pk , i.e., graph with the edge set E =
{{0,1}, {1,2}, . . . , {k − 2, k − 1}} then the resulting metric is the one inherited from
the real line with the Euclidean distance. On the other hand, if G is a complete graph
Kk on k vertices, consisting of all possible pairs of vertices, then d(a,b) = 1 iff a �= b.

Let us consider a product [k]n of metric spaces ([k], d1), . . . , ([k], dn) each with the
same number of elements but probably distinct metrics di . Let us denote elements of
[k]n as a = (a1, . . . , an).

It is easy to see that the l1-type metric on [k]n defined as

d(a,b) = d1(a1, b1) + · · · + dn(an,bn)

is indeed a metric. We choose this way of defining a metric on the product space
because we can reconstruct a graph on [k]n by considering a pair {a,b} an edge if and
only if d(a,b) = 1.

If metrics di are induced by graphs Gi we shall refer to the graph reconstructed
from the metric d as the cartesian product of graphs Gi, i = 1, . . . ,n, denoting it
G = G1 × . . . × Gn. We can equivalently define G by saying that a pair {a,b} of
vertices is an edge whenever there is i such that {ai,bi} is an edge in Gi and aj = bj

for all j �= i.
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Consider the example where Gi = Pk . Multiplying a path by itself we obtain so
called n-dimensional grid graphs.

Given a subset of vertices A ⊂ V of a graph G which is not too small (say, has at
least |V |/2 elements), how big is its neighbourhood, i.e., vertices having a neighbour
in the set A? More generally, how many vertices are there at a distance from A at
most t?

Let us denote t-neighbourhood of A as At := {a ∈ V : d(a,b) � t for some b ∈ A}.
Given a graph, we are interested in finding a set that has the smallest t-boundary, it is,
determining the quantity

min
|A|�|V |/2

|At |. (1)

It turns out that in the case of product graphs of high dimension a striking phenomenon
(known as concentration of measure) is observed: At is almost all of V whenever t is
a small proportion of the diameter of G.

We may pose a question from another point of view: given a class of graphs, which
one has the slowest growth of At , or, seeking a slightly weaker answer, what is a good
lower bound for (1)? This was fully answered by Bollobás and Leader [1] in case when
the class consists of all n-fold products of graphs on k vertices.

Consider, for r � 0, balls around zero B
(n)
k (r) = {a ∈ [k]n: ∑

i ai � r}.

THEOREM 1 [Bollobás and Leader, [1]]. Let G1, . . . ,Gn be connected graphs of
order k. Let G = ∏n

i=1 Gi be their product. Suppose r ∈ {0,1,2, . . .}, and A ⊂ V (G)

is such that |A| � |B(n)
k (r)|. Then, for t = 0,1,2, . . .

|At | �
∣∣B(n)

k (r + t)
∣∣.

The lower bound given by Theorem 1 can be interpreted using probability. Let
X1, . . . ,Xn be independent copies of a random variable X distributed uniformly
over [k]:

P(X = j) = 1/k for all j ∈ [k]. (2)

Now we can estimate |B(n)
k (r + t)| by the means of the following representation:

∣∣B(n)
k (r + t)

∣∣/kn = P(X1 + · · · + Xn � r + t). (3)

Let

Yi = Xi − EXi, i = 1,2, . . . ; Sn = Y1 + · · · + Yn. (4)

Bollobás and Leader [1] estimated the moment generating function exp{hSn} by
calculating moments of Sn and then used Chebyshev’s inequality

P(Sn � t) � inf
h>0

exp
{
h(Sn − t)

}
(5)

to obtain the following statement.
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THEOREM 2 [Bollobás and Leader [1]]. Let G1, . . . ,Gn be connected graphs of
order k and let G = ∏n

i=1 Gi . Suppose A ⊂ V (G) is such that |A| � |V (G)|/2. Then,
for t = 0,1,2, . . . , we have

1 − |At |/kn � P{Sn � t} � exp
{
− 6t2

(k2 − 1)n

}
= exp

{
− t2

2nσ 2

}
, (6)

where Sn is the random variable defined in (4) and nσ 2 = VarSn.

Using the Central Limit Theorem we can see that the constant 6/(k2 − 1) in (6)
cannot be improved. However, one could expect a bound similar to the right tail of a
normal random variable with variance nσ 2. We show that this is indeed the case.

THEOREM 3. For the random variable Sn defined in (4) and t ∈ R we have

P{Sn � t} � cI

(
t

σ
√

n

)
� c√

2π

σ
√

n

t
exp

{
− t2

2nσ 2

}
,

where I (x) = 1−�(x) is the survival function of a standard normal random variable,
c = 5!e5/55 = 5.699 . . . , and σ 2 = (k2 − 1)/12 = VarSn/n.

The author conjectures that the constant c = 5.699 . . . can be replaced by a constant
c = 3!e3/33 = 4.463 . . . .

Theorem 3 gives an improvement upon the bound (6) whenever t is of order larger
than σ

√
n which is the case when we set t to be a ‘small fixed proportion’ of the

diameter of the grid graph, namely t = ε diam(P n
k
) = εn(k − 1). with an arbitrarily

small ε > 0.

Proof of Theorem 3. Consider, for any h < t , a function x �→ (x − h)5+. As
I{x � t} � (x − h)5+/(t − h)5, we get

P{Sn � t} = EI{Sn � t} � inf
h<t

E(Sn − h)5+
(t − h)5

. (7)

Applying Lemma 3 and Lemma 1.1 of [2] we conclude the proof.

2. Lemmas and their proofs

Consider a random variable τ = τ(b,σ 2) which assumes values {−b,0, b}, with pro-
babilities

P(τ = −b) = P(τ = b) = σ 2

2b2
and P(τ = 0) = 1 − σ 2

b2
.

LEMMA 1. For any h ∈ R we have

E(Y − h)5+ � E(τ − h)5+, (8)

where Y is a centered discrete uniform random variable on [k] as defined in (4) and
τ = τ(max Y,VarY).
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Proof. Note that Y is symmetric and so satisfies the conditions of Lemma 3 of [5]
with b = maxY and σ 2 = VarY . Therefore we get that for h ∈ R

E(Y − h)3+ � E(τ − h)3+. (9)

To prove (8) it suffices to show that f (h) = E(τ −h)5+ −E(Y −h)5+ � 0. The func-
tion h �→ (x−h)5+ has the second continuous derivative. Therefore we can differentiate
f under the integral to obtain

f ′(h) = −5E(τ − h)4+ + 5E(Y − h)4+, f ′′(h) = 20E(τ − h)3+ − 20E(Y − h)3+.

It is obvious that f (b1) = f ′(b1) = 0. Moreover, f is convex because from (9) we
have f ′′ � 0. Therefore f � 0.

The following result is probably the essence of the paper.

LEMMA 2. Let τ = τ(b,σ 2) with b and σ satisfying σ 2/b2 � 1/3. Then for all
h ∈ R we have

E(τ − h)5+ � E(η − h)5+,

where η is a normal random variable with mean zero and variance σ 2.

Proof. For simplicity and without loss of generality we may assume that b = 1,
because the general case follows by rescaling. Under this assumption we have that
σ 2 � 1/3. To prove the lemma it suffices to show that E(η − h)5+ − E(τ − h)5+ =:
f (h) � 0.

Case 1. If h � 1, then (τ − h)+ ≡ 0 so f � 0 holds trivially.
Case 2. If h � −1, then

f (h) = E(η − h)5+ − E(τ − h)5 � E(η − h)5 − E(τ − h)5

= ( − 5hEη4 − 10h3
Eη2 − h5) − ( − 5hEτ 4 − 10h3

Eτ 2 − h5)
= 5h

( − 3σ 4 + 2 · 14 · σ 2/2
)
� 0

since σ 2 � 1/3 and odd moments of symmetric random variables vanish.
Case 3. h ∈ [−1,0]. We may reduce this case to the Case 4 as soon as we show that

f (−t) � f (t) for all t ∈ [0,1]. Since (η − t)+ = (−η + t)− is equal in distribution to
(η + t)− (here (x)− = max{−x,0}), and σ 2 � 1/3, we have

f (−t) − f (t) = E(η + t)5+ − E(η − t)5+ − E(τ + t)5+ + E(τ − t)5+

= E(η + t)5 − (1 + t)5 σ 2

2
− t5(1 − σ 2) + (1 − t)5 σ 2

2

= 5tEη4 + 10t3
Eη2 + t5 − 5tσ 2 − 10t3σ 2 − t5

= 5t · 3σ 4 − 5tσ 2 = 5t
(
3σ 4 − σ 2) � 0.



On measure concentration in graph products 447

Case 4. h ∈ [0,1]. It is easy to check that function f restricted to the interval [0,1]
is five times differentiable and its k-th derivative is

f (k)(h) = (−1)kck

(
E(η − h)5−k+ − σ 2

2
(1 − h)5−k

)
, k = 1,2, . . . ,5,

where ck are positive constants, and we make a convention 00 = 1.
The following argument is clear if one looks at the graphs of f (k) .
Note that f (5)(h) = c5σ

2/2 − c5P(η > h), so f (5) is increasing. By Chebyshev’s
inequality we have P(η > 1) � σ 2/2, so f (5)(1) � 0. Consequently, there is a num-
ber x ∈ [0,1] such that f (5) � 0 on [0, x] and f (5) � 0 on [x,1].á Therefore f (3) is
concave on [0, x] and f (3) is convex on [x,1].

In order to see how the sign of f (3) varies, we observe that

f (3)(0) = −c3
(
E(η+)2 − σ 2/2

) = 0, and f (3)(1) = −c3
(
E((η − 1)+)2) < 0.

Consequently, there is some number y ∈ [0,1] such that f (3) � 0 on [0, y] and
f (3) � 0 on [y,1]. Therefore, f ′ is convex on [0, y] and f ′ is concave on [y,1].

In order to see how the sign of f ′ varies we check that

f ′(0) = −5
(
E(η+)4 − σ 2/2

) = −5
(
3σ 4/2 − σ 2/2

)
� 0,

f ′(1) = −5
(
E(η+)4) < 0, and f ′′(1) = 20

(
E(η+)3) > 0,

so we see that f ′ is negative on [0,1]. Finally, since f (1) = E(η − 1)5+ > 0, we get
that f > 0 on [0,1].

LEMMA 3. Let the random variable Sn be defined as in 4. Then for any h < t

we have

E(Sn − h)5+ � E(Zn − h)5+, (10)

where η is a centered normal random variable such that VarZn = VarSn = nσ 2.

Proof. We can write Z as a sum η1 +· · ·+ηn of i.i.d normal random variables each
with mean zero and variance σ 2. We will now use induction on n to prove (10). For
n = 1 it is equivalent to the combination of Lemmas 1 and 2. Now suppose (10) holds
for 1, . . . ,n − 1. Using the induction hypothesis twice (for n − 1 and 1), we get

E(Sn − h)5+ = E
[
E
(
(Y1 + Y2 + · · · + Yn − h)5+ |Y1

)]
� E

[
E
(
(Y1 + η2 + · · · + ηn − h)5+|Y1

)]
= E

[
E
(
(Y1 + η2 + · · · + ηn − h)5+|η2, . . . , ηn

)]
� E

[
E
(
(η1 + η2 + · · · + ηn − h)5+|η2, . . . , ηn

)] = E(Zn − h)5+.
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REZIUMĖ

M. Šileikis. Apie mato koncentracij ↪a graf ↪u sandaugoje

Bollobás ir Leader [1] parodė, jog tarp n jungi ↪u k-osios eilės graf ↪u sandaug ↪u didžiausi ↪a mato koncentracij ↪a
turi n-matės gardelės grafas. Jei aibė A turi pus ↪e graf ↪u sandaugos viršūni ↪u, tai viršūni ↪u, esanči ↪u nuo A ne
arčiau kaip per t , skaičius yra aprėžtas tikimybe P(X1 + · · · + Xn � t), kur Xi – tam tikri paprasti n.v.p.
atsitiktiniai dydžiai. Bollobás ir Leader naudodami moment ↪u generuojanči ↪a funkcij ↪a gavo eksponentin↪i

↪ivert↪i. Naudodami kiek subtilesn ↪e technik ↪a (plg. [3]), mes pagerinome ↪iverčio eil ↪e, ↪iterpdami trūkstam ↪a
daugikl↪i.

Raktiniai žodžiai: graf ↪u sandauga, diskrečios izoperimetrinės nelygybės, mato koncentracija, nepriklau-

som ↪u atsitiktini ↪u dydži ↪u sumos, uodeg ↪u tikimybės, didieji nuokrypiai.


