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Abstract. Bollobas and Leader [1] showed that among the n-fold products of connected graphs of order k
the one with minimal #-boundary is the grid graph. Given any product graph G and a set A of its vertices
that contains at least half of V (G), the number of vertices at a distance at least f from A decays (as t grows)
at a rate dominated by P(X; + ...+ X,, > r) where X; are some simple i.i.d. random variables. Bollobas
and Leader used the moment generating function to get an exponential bound for this probability. We insert
a missing factor in the estimate by using a somewhat more subtle technique (cf. [3]).
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1. Introduction and theorem

Consider a finite set [k] consisting of k elements: {0, 1,...,k — 1}. We may define
various metrics (distances) d on [k]. One of the ways to do that is to consider a graph
G = (V, E) with a vertex set V = [k] and define the distance d(a, b), as the length of
the shortest path between a and b. In order to have a finite metric, we will, of course,
put a restriction that the graph G is connected.

If, for example, we choose G to be a path Py, i.e., graph with the edge set E =
{{0,1},{1,2},...,{k — 2,k — 1}} then the resulting metric is the one inherited from
the real line with the Euclidean distance. On the other hand, if G is a complete graph
K} on k vertices, consisting of all possible pairs of vertices, then d(a, b) = 1 iff a # b.

Let us consider a product [k]" of metric spaces ([k], d}), ..., ([k], d,) each with the
same number of elements but probably distinct metrics d;. Let us denote elements of
[k]" asa = (ay,...,a,).

It is easy to see that the /;-type metric on [k]" defined as

d(a,b) =di(ar,by) + - +dy(an, by)

is indeed a metric. We choose this way of defining a metric on the product space
because we can reconstruct a graph on [k]” by considering a pair {a, b} an edge if and
only if d(a,b) = 1.

If metrics d; are induced by graphs G; we shall refer to the graph reconstructed
from the metric d as the cartesian product of graphs G;,i = 1,...,n, denoting it
G =G1 X ... x G,. We can equivalently define G by saying that a pair {a, b} of
vertices is an edge whenever there is i such that {a;, b;} is an edge in G; and a; = b;
forall j #i.
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Consider the example where G; = P;. Multiplying a path by itself we obtain so
called n-dimensional grid graphs.

Given a subset of vertices A C V of a graph G which is not too small (say, has at
least |V'|/2 elements), how big is its neighbourhood, i.e., vertices having a neighbour
in the set A? More generally, how many vertices are there at a distance from A at
most ¢?

Let us denote t-neighbourhood of A as A; :=={a € V:d(a,b) <t forsome b € A}.
Given a graph, we are interested in finding a set that has the smallest 7-boundary, it is,
determining the quantity

min |A;]. (1)
[AIZIVI/2
It turns out that in the case of product graphs of high dimension a striking phenomenon
(known as concentration of measure) is observed: A; is almost all of V whenever ¢ is
a small proportion of the diameter of G.

We may pose a question from another point of view: given a class of graphs, which
one has the slowest growth of A;, or, seeking a slightly weaker answer, what is a good
lower bound for (1)? This was fully answered by Bollobas and Leader [1] in case when
the class consists of all n-fold products of graphs on k vertices.

Consider, for r > 0, balls around zero B,E") (ry={aelk]™ Y ja; <r}.

THEOREM 1 [Bollobas and Leader, [1]]. Let Gy, ..., G, be connected graphs of
order k. Let G =[]}_, G; be their product. Suppose r € {0,1,2,...}, and A C V(G)

is such that |A| = |B" (r)|. Then, fort =0,1,2,...
1A, > |B" (r +1)].

The lower bound given by Theorem 1 can be interpreted using probability. Let
X1,..., X, be independent copies of a random variable X distributed uniformly
over [k]:

P(X = j)=1/k forall j e [k]. )

Now we can estimate |B ,E") (r +1)| by the means of the following representation:

|B]E")(r—|—t)|/k":]P’(X1+"'+Xn<”+t)' 3)
Let
Yi=Xi—EX;, i=12..; S,=Yi+--+V, “)

Bollobds and Leader [1] estimated the moment generating function exp{AS,} by
calculating moments of S,, and then used Chebyshev’s inequality

B(Sy > 1) < inf exp{h(S, — 1)} 5)

to obtain the following statement.
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THEOREM 2 [Bollobds and Leader [1]]. Let Gy, ..., G, be connected graphs of
order k and let G = ]_[;Ll G;. Suppose A C V(G) is such that |A| > |V (G)|/2. Then,
fort=0,1,2,..., we have

\ 61> 12
1 —]A: /K" <SPS, > 1} <exp @0 | TP T a2 [ (6)

where S, is the random variable defined in (4) and no? = Vvars,.

Using the Central Limit Theorem we can see that the constant 6/ (k%2 = 1) in (6)
cannot be improved. However, one could expect a bound similar to the right tail of a
normal random variable with variance no2. We show that this is indeed the case.

THEOREM 3. For the random variable S, defined in (4) and t € R we have
t c on 12
< expl —— [,
o/n 2r ot 2no?

where I (x) =1 — ®(x) is the survival function of a standard normal random variable,
c=51/5=5.699..., and 0> = (k> — 1)/12 = VarS, /n.

]P){Sn>t}<CI<

The author conjectures that the constant ¢ = 5.699 ... can be replaced by a constant
c=31e3/33=4.463....

Theorem 3 gives an improvement upon the bound (6) whenever ¢ is of order larger
than o ,/n which is the case when we set 7 to be a ‘small fixed proportion’ of the
diameter of the grid graph, namely ¢ = ¢ diam(P}') = en(k — 1). with an arbitrarily
small ¢ > 0.

Proof of Theorem 3. Consider, for any h < t, a function x — (x — h)i. As
I{x > 1} < (x — )3/t — h)3, we get

P{S, >t} =EI{S, >} < i fE(S”_h)5+
e 2 S T = hy

Applying Lemma 3 and Lemma 1.1 of [2] we conclude the proof.

(N

2. Lemmas and their proofs

Consider a random variable 7 = 7 (b, 0'2) which assumes values {—b,0, b}, with pro-
babilities

o? o?
P(r=-b)=P(r=b) = ) and P(r=0)=1- o
LEMMA 1. Forany h € R we have
E(Y — h)3. <E(r — h)3, (8)

where Y is a centered discrete uniform random variable on [k] as defined in (4) and
T = t(max Y, VarY).
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Proof. Note that Y is symmetric and so satisfies the conditions of Lemma 3 of [5]
with b =max Y and o> = VarY . Therefore we get that for 7 € R

E(Y —h)3 <E(r —h)3. ©)

To prove (8) it suffices to show that f(h) =E(r — h)i —E — h)i > 0. The func-
tionh > (x — h)i has the second continuous derivative. Therefore we can differentiate
f under the integral to obtain

[l =—=5E(t — )% +5E(Y — )%, f"(h) =20E(r — h)3 —20E(Y — h)3.
It is obvious that f(b;) = f'(b1) = 0. Moreover, f is convex because from (9) we
have f”' > 0. Therefore f > 0.

The following result is probably the essence of the paper.
LEMMA 2. Let t = 1(b,0?%) with b and o satisfying o>/b* > 1/3. Then for all
h € R we have
E(r — k)3 <E@—h),

where 1 is a normal random variable with mean zero and variance o>.

Proof. For simplicity and without loss of generality we may assume that b = 1,
because the general case follows by rescaling. Under this assumption we have that
02> 1/3. To prove the lemma it suffices to show that E(n — h)i —E(r — h). =:

fh) =0.
Case 1.If 1 > 1, then (t — h)4 =0so f > 0 holds trivially.
Case 2. If h < —1, then

f() =E@ =3 —E@ —h)’ >E@ —h)’ - Ex —h)’
= (= ShEn* — 10h°En? — 1°) — (= 5hEt* — 10°Ec? — %)
=5h(—30*+2-1*.6%/2) >0

since o2 > 1/3 and odd moments of symmetric random variables vanish.

Case 3. 1 € [—1, 0]. We may reduce this case to the Case 4 as soon as we show that
f(—=t) > f(¢) forall t €[0, 1]. Since (n — t)+ = (—n +¢t)_ is equal in distribution to
(n +1t)_ (here (x)_ = max{—x, 0}), and 02> 1/3, we have

f=D = fO =Em+03 —E@—0% —E@ +13 +E( -3
o2 o?
=E@n+1)° — (1+t)57 —*(1-0%)+0 —z)57

=5tEn* + 10°En® + 12 — 5t6% — 10762 — 1

=5¢-30* —5t0? =5t(30* — %) > 0.
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Case 4. h € [0, 1]. It is easy to check that function f restricted to the interval [0, 1]
is five times differentiable and its k-th derivative is

2
FO ) = (=1)kex (E(n S %(1 —h)5">, k=1,2,...,5,

where ¢y are positive constants, and we make a convention 00 = 1.

The following argument is clear if one looks at the graphs of f®.

Note that £ (h) = c502/2 — csP(n > h), so ) is increasing. By Chebyshev’s
inequality we have P(n > 1) < 02/2, so £ (1) > 0. Consequently, there is a num-
ber x € [0, 1] such that f(s) < 0on [0, x] and f(s) > 0 on [x, 1].4 Therefore f(3) is
concave on [0, x] and f @) is convex on [x, 1].

In order to see how the sign of £ varies, we observe that

0 =-c3(E()* —=0?/2) =0, and  fO(1) = —c3(E(( - D+)?) <0.

Consequently, there is some number y € [0, 1] such that f& >0 on [0, y] and
@ <0only, 1]. Therefore, f’ is convex on [0, y] and f’ is concave on [y, 1].
In order to see how the sign of f’ varies we check that

f10) =—5EMm)* —0?/2) = -5(30%/2 - 0?/2) <0,
f(H)=-5Emn*) <0, and f’(1)=20(En)’) >0,

so we see that f’ is negative on [0, 1]. Finally, since f(1) =E(n — 1)§F > 0, we get
that f > O on [0, 1].

LEMMA 3. Let the random variable S, be defined as in 4. Then for any h <t
we have
E(Sy — )} <E(Zy — W)Y (10)

where 1 is a centered normal random variable such that VarZ,, = Var§,, = no2.

Proof. We can write Z as asum 1| + - - - + 1, of i.i.d normal random variables each
with mean zero and variance o2. We will now use induction on 1 to prove (10). For
n =1 it is equivalent to the combination of Lemmas 1 and 2. Now suppose (10) holds
for 1,...,n — 1. Using the induction hypothesis twice (forn — 1 and 1), we get

E(S, —h) =E[E((Y1 + Yo+ + Y, —h) 11)]

SE[E(+m+ -+ —h)L0)]
E[E((Y1 +m 4400 — ) n2. ... )]
E[E(

E((n +m2+ - +n0a— 02, ... on0) | =E(Zy — ).
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REZIUME

M. Sileikis. Apie mato koncentracija grafu sandaugoje

Bollobasir Leader [1] parodé, jog tarp n jungiy k-osios eilés grafy sandaugy didZiausia mato koncentracija
turi n-matés gardelés grafas. Jei aibé A turi puse grafy sandaugos vir§iiniy, tai vir§niy, esan¢iy nuo A ne
arciau kaip per ¢, skaiCius yra apréZtas tikimybe P(X| + --- + X, > 1), kur X; — tam tikri paprasti n.v.p.
atsitiktiniai dydZiai. Bollobds ir Leader naudodami momenty generuojancia funkcija gavo eksponentinj
iverti. Naudodami kiek subtilesne technika (plg. [3]), mes pagerinome jvercio eile, jterpdami trikstama
daugiklj.

Raktiniai ZodZiai: grafy sandauga, diskrecios izoperimetrinés nelygybés, mato koncentracija, nepriklau-
somy atsitiktiniy dydZiy sumos, uodegy tikimybés, didieji nuokrypiai.



