Left permutable multiplicative sets and left strongly prime ideals in rings

Algirdas KAUČIKAS (VPU)

e-mail: algiskau@yahoo.com

Abstract. Left permutable multiplicative sets S for an associative ring R are defined. Particularly, this notion includes commutative multiplicative sets of the associative ring. We also define the notion of the left S-ideal and prove, that each left S-ideal, maximal with respect to being disjoint from S, is left strongly prime.

Keywords: (left) strongly prime ideal; insulator; multiplicative set; left strongly prime radical.

All considered rings are associative with identity element. $A \subset B$ means that A is a proper subset of B.

Let *R* be a nonzero ring. We recall that a left ideal $\mathfrak{p} \subset R$ is called *(left) strongly prime* if for each $u \notin \mathfrak{p}$ there exists a finite set $\alpha_1, ..., \alpha_n \in R$, n = n(u), such that $r\alpha_1 u, ..., r\alpha_n u \in \mathfrak{p}$, where $r \in R$, implies that $r \in \mathfrak{p}$. Each such subset $\{\alpha_1 u, ..., \alpha_n u\}$ is called *an insulator* of *u* for \mathfrak{p} . Evidently, maximal left ideals are strongly prime. When *R* is commutative, strongly prime ideals are precisely prime ideals. When the zero ideal is left strongly prime, we obtain the notion of a left strongly prime ring, introduced and investigated in [2]. Basic properties of the left strongly prime ideals are considered in [3, 4, 7].

1. Multiplicative sets and left strongly prime ideals

Recall that a subset S of a ring R is multiplicative, if it is multiplicatively closed and contains the identity element of R. By well known important results in commutative algebra, each ideal $\mathfrak{p} \subset R$, maximal with respect to being disjoint from S, i.e., $\mathfrak{p} \cap S = \emptyset$, is prime. Also, the set $R \setminus \mathfrak{p}$ is multiplicative. There are some generalizations of this result for noncommutative rings. Recall that a subset $S \subseteq R$ of an associative ring is an *m*-system if $1_R \in S$ and for each $a, b \in S$, there exists $r \in R$ such that $arb \in S$. Main properties of the m-systems are also well known: a complement of a prime (two-sided) ideal is an m-system, and each two-sided ideal maximal with respect to being disjoint from S is prime. This result was generalized for two-sided strongly prime ideals in R, when R is viewed as the left module over its multiplication ring (see [5], Proposition 3.4 and Theorem 3.5). All mentioned results hold only for the two-sided ideals. We note that no methods, allowing to construct left strongly prime ideals using multiplicative sets of a noncommutative ring, were known. We introduce the notion of a left permutable multiplicative set for an associative ring and get their relations with a left strongly prime ideals of a ring.

Let *R* be a nonzero ring. Denote by $\mathfrak{F}(R)$ the set which elements are all finite subsets of the ring *R*, endowed with the structure of monoid under standard multiplication, induced by the multiplication of the ring: if $\{a_1, ..., a_n\} = \mathfrak{a}, \{b_1, ..., b_m\} = \mathfrak{b} \in \mathfrak{F}(R)$, then $\mathfrak{ab} = \{a_i b_j\}, \ 1 \leq i \leq n, \ 1 \leq j \leq m$.

In what follows S will be a submonoid of $\mathfrak{F}(R)$. This means that elements of S are finite subsets of the ring R, $\{1_R\} \in S$ and S is closed under multiplication mentioned above. Sending $r \in R$ to the singleton $\{r\} \in \mathfrak{F}(R)$ we obtain a canonical inclusion of the multiplicative monoid R into $\mathfrak{F}(R)$.

We call a submonoid $S \subseteq \mathfrak{F}(R)$ a *left permutable multiplicative set*, if for all $\mathfrak{a}, \mathfrak{b} \in S$, there exist $\mathfrak{c}, \mathfrak{d} \in S$, depending from \mathfrak{a} and \mathfrak{b} , such that $\mathfrak{abc} = \mathfrak{bd}$.

Particularly, such are commutative multiplicative subsets of the ring *R*. Let $\mathfrak{s} = \{a_1, ..., a_m\} \subseteq R$ be any finite subset. Then $\mathcal{S} = \{\mathfrak{s}^m, m \ge 0\}$ is commutative, so, left permutable multiplicative set in $\mathfrak{F}(R)$.

Note that in terms of elements the left permutability for $S \subseteq \mathfrak{F}(R)$ particularly means that for all $a_i \in \mathfrak{a}, b_j \in \mathfrak{b}, c_k \in \mathfrak{c}$, there exist elements $b_m \in \mathfrak{b}, d_n \in \mathfrak{d}$, such that $a_i b_j c_k = b_m d_n$.

In the sequel we will need the following lemma.

LEMMA 1. Let $\mathfrak{a}_1, ..., \mathfrak{a}_n, \mathfrak{b}_1, ..., \mathfrak{b}_n \in S$, where S is a left permutable multiplicative set. Then there exist $\mathfrak{c}_n, \mathfrak{d}_1, ..., \mathfrak{d}_n \in S$, having property $\mathfrak{a}_k \mathfrak{b}_k \mathfrak{c}_n = \mathfrak{b}_k \mathfrak{d}_k$, for all $1 \leq k \leq n$.

Proof. We use induction. The lemma is true for n = 1 by the definition of a left permutable multiplicative set. Take $\mathfrak{a}_{n+1}, \mathfrak{b}_{n+1} \in S$. Let $\mathfrak{c}_n, \mathfrak{d}_1, ..., \mathfrak{d}_n \in S$ be such, that $\mathfrak{a}_k \mathfrak{b}_k \mathfrak{c}_n = \mathfrak{b}_k \mathfrak{d}_k$ for $1 \leq k \leq n$. Take $\mathfrak{c}, \mathfrak{d} \in S$ for which $\mathfrak{a}_{n+1}\mathfrak{b}_{n+1}\mathfrak{c} = \mathfrak{b}_{n+1}\mathfrak{d}$ and $\mathfrak{e}, \mathfrak{f} \in S$ for which $\mathfrak{c}_n \mathfrak{c}\mathfrak{e} = \mathfrak{c}\mathfrak{f}$. Then for $\mathfrak{c}_{n+1} = \mathfrak{c}_n \mathfrak{c}\mathfrak{e} = \mathfrak{c}\mathfrak{f}$ our assertion holds for all $1 \leq k \leq n+1$.

We say that a left ideal $L \subset R$ is *disjoint from* $S \subset \mathfrak{F}(R)$ if $\mathfrak{a} \not\subseteq L$ for all $\mathfrak{a} \in S$. By this definition, L can contain some, but not all elements of \mathfrak{a} . Evidently, a left ideal disjoint from S, exists if and only if the zero subset $\{0\} \notin S$.

Now we introduce the main notion, which enables us to get the main results of this paper.

A left ideal $L \subseteq R$ is called *an* S-*ideal*, if $L\mathfrak{a} \subseteq L$ for all $\mathfrak{a} \in S \subseteq \mathfrak{F}(R)$.

This means, that $La \subseteq L$ for all elements $a \in \mathfrak{a}$ where $\mathfrak{a} \in S$. Evidently, two-sided ideals are S-ideals.

THEOREM 1. Let $S \subset \mathfrak{F}(R)$ be a left permutable multiplicative set. Then each left S-ideal $\mathfrak{p} \subset R$, maximal with respect to being disjoint from S, is left strongly prime. Such a left S-ideal exists if and only if $\{0\} \notin S$

Proof. Consider the family $\mathcal{L} = \{L_i, i \in I\}$ of all proper left S-ideals of a ring R, disjoint from S. As noted above, \mathcal{L} is not empty if and only if $\{0\} \notin S$, because then L = 0 belongs to the family. So, when $\{0\} \notin S$, then \mathcal{L} is not empty and inductive, because elements of S contain only finite number of elements of the ring. Thus, by

Zorn's lemma, \mathfrak{L} contains at least one maximal element $\mathfrak{p} \in \mathfrak{L}$. We show that \mathfrak{p} is left strongly prime ideal. Let $u \notin \mathfrak{p}$. Denote $uS = \{ua\} \subseteq R$ where $a \in \mathfrak{a} \in S$.

Then $\mathfrak{p} + RuS$ is an S-ideal properly containing \mathfrak{p} , so $\mathfrak{a} \subseteq \mathfrak{p} + RuS$ for some $\mathfrak{a} \in S$. Thus, for each $a_k \in \mathfrak{a}$ we have expressions

$$a_k = p_k + \alpha_{k1} u f_{k1} + \dots + \alpha_{km} u f_{km}$$

where $p_k \in \mathfrak{p}$, $\alpha_{ki} \in R$, $f_{ki} \in \mathfrak{f}_{ki} \in S$. We show that the finite set $\{\alpha_{ki}u\}$, consisting of all elements $\alpha_{ki}u$ in these expressions, is an insulator of u for \mathfrak{p} . Indeed, let all elements $r\alpha_{ki}u \in \mathfrak{p}$ for some $r \in R$. Then, because \mathfrak{p} is an S-ideal, elements $r\alpha_{ki}uf_{ki}$ also belong to \mathfrak{p} . Thus all $ra_k \in \mathfrak{p}$, so $r\mathfrak{a} \subseteq \mathfrak{p}$. If $r \notin \mathfrak{p}$, then, analogously, the left S-ideal $\mathfrak{p} + RrS$ contains some subset $\mathfrak{b} \in S$. So, for all $b_l \in \mathfrak{b}$ we would have

$$b_l = q_l + \beta_{l1} r g_{l1} + \dots + \beta_{ln} r g_{ln}$$

with some $q_l \in \mathfrak{p}$, $\beta_{lj} \in R$, $g_{lj} \in \mathfrak{g}_{lj} \in S$. By Lemma 1, there exist $\mathfrak{c}, \mathfrak{d}_l \mathfrak{j} \in S$, such that $\mathfrak{g}_{lj}\mathfrak{a}\mathfrak{c} = \mathfrak{a}\mathfrak{d}_{lj}$ for all \mathfrak{g}_{lj} . Multiplying all expressions for b_l by $\mathfrak{a}\mathfrak{c}$, we immediately obtain that $\mathfrak{b}\mathfrak{a}\mathfrak{c} \subseteq \mathfrak{p}$. But $\mathfrak{b}\mathfrak{a}\mathfrak{c} \in S$, so this is a contradiction with \mathfrak{p} being disjoint from S. So $r \in \mathfrak{p}$ and \mathfrak{p} is left strongly prime.

Moreover, we have showed that elements from S are insulators of the 1_R for \mathfrak{p} , i.e., $r\mathfrak{a} \subseteq \mathfrak{p}$ implies $r \in \mathfrak{p}$ for all $\mathfrak{a} \in S$.

Remark 1. Evidently, if each left S-ideal $L_{\alpha} \in \mathfrak{L}$ contains some left ideal L, then the same argument gives us a left strongly prime S-ideal p containing L.

COROLLARY 1. Let $\mathfrak{s} = \{a_1, ..., a_n\} \subseteq R$ be a non-nilpotent subset, $S = \{\mathfrak{s}^m, m \ge 0\}$. Then there exists a left strongly prime S-ideal disjoint from S.

Proof. Indeed, S is commutative and, because \mathfrak{s} is non-nilpotent subset of R, $\{0\} \notin S$, so the zero ideal of R is disjoint from S and $\mathfrak{L} \neq \emptyset$. So, by Theorem 1, there exists left strongly prime ideal \mathfrak{p} , having properties $\mathfrak{p}\mathfrak{s} \subseteq \mathfrak{p}$ and $\mathfrak{s}^m \not\subseteq \mathfrak{p}$ for all $m \in \mathbb{N}$. Particularly $\mathfrak{s} \not\subseteq \mathfrak{p}$.

References

- 1. M. Ferrero, R. Wisbauer, Unitary strongly prime rings and related radicals, *J. of Pure and Applied Algebra*, **181**, 209–226 (2003).
- 2. D. Handelman, J. Lawrence, Strongly prime rings, Trans. Amer. Math. Soc., 211, 209–223 (1975).
- 3. P. Jara, P. Verhaege, A. Verschoren, On the left spectrum of a ring, *Comm. Algebra*, **22**(8), 2983–3002 (1994).
- A. Kaučikas, On the left strongly prime modules, ideals and radicals, in: A. Dubickas, A. Laurinčikas, and E. Manstavičius (Eds.), *Analytic and Probabilistic Methods in Number Theory*, TEV, Vilnius (2002), pp. 119–123.
- 5. A. Kaučikas, R. Wisbauer, On strongly prime rings and ideals, Comm. Algebra, 28, 5461–5473 (2000).
- A.L. Rosenberg, The left spectrum, the Levitzki radical, and noncommutative schemes, *Proc. Natl. Acad. Sci. USA*, 78, 8583–8588 (1990).
- 7. A.L. Rosenberg, Noncommutative Algebraic Geometry and Representations of Quantized Algebras, Kluwer, Dortrecht (1995).

REZIUMĖ

A. Kaučikas. Kairiosios perstatomos multiplikatyviosios aibės ir stipriai pirminiai žiedų idealai

Apibrėžtos kairiosios perstatomos multiplikatyviosios žiedų aibės S ir kairieji S-idealai. Įrodyta, kad kiekvienas maksimalus kairysis žiedo idealas, nesikertantis su S, yra stipriai pirminis.

Raktiniai žodžiai: (kairysis) stipriai pirminis idealas, izoliatorius, multiplikatyvioji aibė; kairysis stipriai pirminis radikalas.